

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

SCENARIO SELECTION AND STUDENT ASSESSMENT
MODULES FOR CYBERCIEGE

by

Tiat Leng, Teo

December 2003

 Thesis Advisor: Cynthia Irvine
 Second Reader: Michael Thompson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)
Scenario Selection and Student Assessment Modules for CyberCIEGE

6. AUTHOR(S) Tiat Leng, TEO

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

CyberCIEGE aims to provide an Information Assurance (IA) teaching/learning Laboratory in the form of an

interactive, entertaining, commercial-grade PC-based computer game. Each game plays as a single scenario that serves to

teach a particular IA concept. However, more synergy can be gained if there is higher-order organization of these scenarios,

such as by grouping around a set of desired concepts to be taught, or by increasing the complexity of the scenarios built around

a common theme. This thesis aims to provide an instructor tool for this purpose.

In addition, by tapping the CyberCIEGE event log files generated at the end of each game, we can reconstruct the

game progress to support After Action Reviews (AAR) to assist the instructor and student to analyze game decisions and the

student’s progress. This provides a constructive follow-up to review and reinforce the concepts being taught.

15. NUMBER OF
PAGES 127

14. SUBJECT TERMS
 Information Assurance, Security Education, After Action Review.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SCENARIO SELECTION AND STUDENT ASSESSMENT MODULES
FOR CYBERCIEGE

Tiat Leng, Teo

Civilian, Singapore
B.Sc, National University of Singapore, 1991

M.Tech(SE), National University of Singapore, 1999

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2003

Author: Tiat Leng, Teo

Approved by: Cynthia Irvine

Thesis Advisor

Michael Thompson
Second Reader

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

CyberCIEGE aims to provide an Information Assurance (IA) teaching/learning

Laboratory in the form of an interactive, entertaining, commercial-grade PC-based

computer game. Each game plays as a single scenario that serves to teach a particular IA

concept. However, more synergy can be gained if there is higher-order organization of

these scenarios, such as by grouping around a set of desired concepts to be taught, or by

increasing the complexity of the scenarios built around a common theme. This thesis

aims to provide an instructor tool for this purpose.

In addition, by tapping the CyberCIEGE event log files generated at the end of

each game, we can reconstruct the game progress to support After Action Reviews (AAR)

to assist the instructor and student to analyze game decisions and the student’s learning

progress. This provides a constructive follow-up to review and reinforce the concepts

being taught.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. BACKGROUND.. 1
B. SCOPE.. 4

II. REQUIREMENTS.. 7
A. EXISTING PRODUCTS .. 7

1. CyberProtect.. 7
2. Information Security Wargaming System (ISWS) 9
3. Artificial Intelligence (AI) Wars: The Awakening......................... 11

B. BROAD DESIGN OBJECTIVES.. 13
1. Content: Understand the Threat ... 13
2. Content: Awareness of Known Weakness and Attack

Techniques ... 13
3. Pedagogy: Support Multiple Training Objectives 13
4. Pedagogy: Support Multiple Perspectives 14
5. Content: Model the Trainee’s Environment................................... 14
6. Portable, Self Contained Laboratory .. 14

C. COMPARATIVE REVIEW .. 14
D. CYBERCIEGE.. 17
E. THE GAPS... 18

1. Campaign Play... 18
2. After-Action Reviews .. 19
3. Support for Multiple Perspectives ... 20

III. ANALYSIS... 21
A. CONCEPT OF OPERATIONS ... 21
B. ACTORS .. 21

1. Taxonomy Manager .. 22
2. Instructor ... 22
3. Student.. 22
4. CyberCIEGE ... 22
5. Scenario Definition Tool ... 22

C. USE CASES ... 22
1. [UC.1] Manage Taxonomy ... 23
2. [UC.2] Setup Campaign.. 23
3. [UC.3] Release Campaign... 23
4. [UC.4] Conduct After-Action Review (AAR) 23
5. [UC.5] Load Campaign... 24
6. [UC.6] Play Scenario ... 24

D. INTERFACES WITH CYBERCIEGE (RIVERMIND) 24
1. Scenario Definition File Format... 24
2. Command-line Parameters... 25

 viii

3. Event Logging.. 25
E. INTERFACES WITH SCENARIO EDITOR.. 27

1. Taxonomy File Format ... 27
2. Embedded Taxonomy Tags in the Scenario Definition File.......... 27

IV. DESIGN & IMPLEMENTATION.. 29
A. DESIGN.. 29
B. IMPLEMENTATION... 30
C. INTEGRATION.. 32

V. DISCUSSION .. 33
A. RESULTS... 33

1. Application Modules ... 33
a. Taxonomy Manager ... 33
b. Campaign Manager.. 34
c. Campaign Player .. 36
d. Campaign Analyzer .. 37

2. Interface Specifications... 41
3. Influences on the Design of CyberCIEGE 41

B. THE QUESTIONS ANSWERED.. 42

VI. CONCLUSION.. 43
A. CONCLUSION.. 43
B. FURTHER WORK ... 43

1. Improved Details & Usability... 43
2. Taxonomy of Terms .. 43
3. Event Log Analysis.. 44

APPENDIX A. USE CASE SPECIFICATIONS .. 45
A. PURPOSE .. 45
B. USE CASES ... 45

1. [UC.1] Manage Taxonomy ... 45
2. [UC.2] Setup Campaign.. 46
3. [UC.3] Release Campaign... 48
4. [UC.4] Conduct After-Action Review.. 50
5. [UC.5] Load Campaign... 53
6. [UC.6] Play Scenario ... 55

APPENDIX B. DETAILED DESIGN.. 57
A. PURPOSE .. 57
B. DYNAMIC VIEW - USE CASE DESIGN.. 57

1. [UC.1] Manage Taxonomy ... 57
2. [UC.2] Setup Campaign.. 61
3. [UC.3] Release Campaign... 67
4. [UC.4] Conduct After-Action Review.. 70
5. [UC.5] Load Campaign... 75
6. [UC.6] Play Scenario ... 78

APPENDIX C. INTERFACE SPECIFICATIONS WITH RIVERMIND............. 81

 ix

A. PURPOSE .. 81
B. SCENARIO FILE FORMAT... 81
C. CYBERCIEGE PROGRAM PARAMETERS... 81
D. EVENT LOG ... 82

APPENDIX D. INTERFACE SPECIFICATIONS WITH KEN JOHNS
(SCENARIO DEFINITION TOOL) ... 97
A. PURPOSE .. 97
B. TAXONOMY FILE FORMAT.. 97
C. EMBEDDED TAXONOMY TAGS... 98
D. SCENARIO EDITOR PROGRAM PARAMETERS................................ 98

APPENDIX E. SOURCE CODES ... 99
A. PURPOSE .. 99
B. TAXONOMY MANAGER... 99
C. CAMPAIGN MANAGER .. 99
D. CAMPAIGN PLAYER... 100
E. CAMPAIGN ANALYZER... 101
F. UTILITY.. 102
G. BIN.. 102

LIST OF REFERENCES ... 103

INITIAL DISTRIBUTION LIST .. 107

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Information Operations relationships across time. (From [Joint 1998])........... 2
Figure 2. CyberCIEGE. .. 3
Figure 3. CyberProtect - tools acquisition screen... 7
Figure 4. CyberProtect - system with countermeasures applied....................................... 8
Figure 5. ISWS - tutorial. ... 10
Figure 6. ISWS - attack scenario. ... 11
Figure 7. AIWars - Inside a Router. (From [Nexus 2003]). .. 12
Figure 8. Actor survey. ... 21
Figure 9. Use case model survey. ... 22
Figure 10. Sample fragment of an Event Log File. .. 26
Figure 11. Sample fragment of a Taxonomy File... 27
Figure 12. Taxonomy tag embedded in a Scenario Definition File.................................. 28
Figure 13. Transitioning from analysis to design. .. 29
Figure 14. Design model template.. 29
Figure 15. Layered architecture. ... 31
Figure 16. Inter-relationships between the modules and files. ... 31
Figure 17. Taxonomy Manager. ... 33
Figure 18. Campaign Manager. .. 34
Figure 19. Campaign Manager - constructing the campaign.. 35
Figure 20. Campaign Manager - taxonomy-based scenario filter. 36
Figure 21. Campaign Player. .. 37
Figure 22. Campaign Analyzer... 38
Figure 23. Event Log Analyzer. ... 39
Figure 24. Taxonomy Editor... 46
Figure 25. Campaign Manager. .. 47
Figure 26. Campaign editor. ... 48
Figure 27. Releasing a campaign.. 49
Figure 28. Campaign Analyzer... 51
Figure 29. Event Log Analyzer. ... 52
Figure 30. Campaign Player. .. 54
Figure 31. Playing a scenario.. 56
Figure 32. [UC1.0] Basic Flow: Manage Taxonomy. .. 58
Figure 33. [UC1.1] Scenario: Add Taxonomy. .. 58
Figure 34. [UC1.2] Scenario: Edit Taxonomy.. 59
Figure 35. [UC1.3] Scenario: Delete Taxonomy.. 59
Figure 36. [UC1.4] Scenario: Save Taxonomy. ... 60
Figure 37. [UC1.5] Scenario: Cancel Taxonomy Session.. 60
Figure 38. [UC2.0] Basic Flow: Setup Campaign.. 62
Figure 39. [UC2.1] Scenario: Add Campaign. ... 63
Figure 40. [UC2.2] Scenario: Edit Campaign. ... 64
Figure 41. [UC2.3] Scenario: Delete Campaign... 65

 xii

Figure 42. [UC2.4] Scenario: Save Campaigns.. 66
Figure 43. [UC2.5] Scenario: Cancel/Close Campaign Management Session................. 66
Figure 44. [UC3.1] Scenario: Release on New Campaign. .. 67
Figure 45. [UC3.2] Scenario: Release on Edit Campaign. ... 69
Figure 46. [UC4.0] Basic Flow: Conduct After-Action Review. 70
Figure 47. [UC4.1] Scenario: Select Campaign. ... 71
Figure 48. [UC4.2] Scenario: Examine Details of a Scenario. .. 72
Figure 49. [UC4.3] Scenario: Play Scenario. .. 72
Figure 50. [UC4.4] Scenario: View Log. .. 73
Figure 51. [UC4.5] Scenario: Load Saved State.. 74
Figure 52. [UC4.6] Scenario: Close the Event Log Analyzer. .. 75
Figure 53. [UC4.7] Scenario: Close the Campaign Analyzer. .. 75
Figure 54. [UC5.0] Basic Flow: Load Campaign... 76
Figure 55. [UC5.1] Scenario: Select Campaign. .. 77
Figure 56. [UC5.2] Scenario: Close Campaign Tool. .. 77
Figure 57. [UC6.0] Basic Flow: Play Campaign.. 78
Figure 58. Event Log Document Type Definition.. 84
Figure 59. Taxonomy Document Type Definition. .. 97
Figure 60. Taxonomy.xml sample. ... 98
Figure 61. Embedded Taxonomy tags. ... 98

 xiii

LIST OF TABLES

Table 1 Comparison of products reviewed... 16
Table 2 Comparison with CyberCIEGE... 18
Table 3 Use case realization... 30
Table 4 Implemented set of events... 40
Table 5 CyberCIEGE program parameters. ... 82
Table 6 Element/attribute description. ... 96
Table 7 Taxonomy Manager source codes... 99
Table 8 Campaign Manager source codes.. 100
Table 9 Campaign Player source codes.. 101
Table 10 Campaign Analyzer source codes. .. 101
Table 11 Utility and base classes. .. 102
Table 12 Resource files. ... 102

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I wish to thank Prof Cynthia Irvine and especially Michael Thompson for their

inspiring and invaluable guidance during the course of this thesis; the developers from

Rivermind who are building CyberCIEGE itself, offering me a first-hand view of a

Silicon Valley-based games company in action; and fellow thesis students working on

various aspects of the CyberCIEGE project: Ken Johns and Marc Meyers.

I also wish to thank my sponsor, the Defence Science and Technology Agency

(DSTA) for the scholarship to participate in this enriching experience at the Naval

Postgraduate School in Monterey, and the Ministry of Defence, Singapore, for creating

this fascinating joint program between the National University of Singapore and NPS.

Being a member of the pioneer batch in this program has been both exciting as well as

painful.

And finally, to my wife and two wonderful kids who tolerated my insufferable

mania to study at night, and who have thoroughly enjoyed our experiences here in the

United States.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND
As mentioned by [Salzer 1975], security is often viewed as “a negative kind of

requirement”. It is not uncommon that when faced with resource and schedule demands,

security is often one of the first victims of project management prioritization. The

consequences of such decisions are often not seen until the system has gone into

operation. The impacts are only felt when security flaws are subsequently exploited or

perceived to be exploitable. Traditional information systems have often seen security

issues addressed only as an after thought, with dramatically disastrous effects. Attempts

at conducting security analysis at that point are especially hard, as the system has become

monolithic with hundreds of thousands of lines of codes to be analyzed. Post-

implementation defects eventually lead to demands for numerous ad-hoc patches and

consequent system down times. On occasions, hastily but poorly tested patches have

themselves contributed to introducing further flaws, with patches requiring patches

[Livingston 2003], and in some cases exploited by unskilled vandals (e.g. “script-

kiddies”).

Recognition of the needs for well-designed information security have been

recognized as early as the 70s, as exemplified by the [Anderson 1972] study and the

[Saltzer 1975] paper. In the military arena, increasing dependence and use of information

technology, initially for combat support operations, and in more recent times as integral

components of Command, Control and Communication (C3I) and Intelligence,

Surveillance and Reconnaissance (ISR) systems have elevated the importance of

information security. Military operations that have traditionally been conducted only in

the physical space are rapidly moving into the information space as well. To this end, the

US Joint doctrine for Information Operations (IO) [Joint 1998] recognizes Information

Assurance (IA) as one of the key tenets of an effective IO strategy. As defined in [Joint

1998], IA is “IO that protect and defend information systems by ensuring their

availability, integrity, authentication, confidentiality and non-repudiation”. It includes

provision for restoration of information systems incorporating protection, detection and

reaction capabilities (see Figure 1).

2

Figure 1. Information Operations relationships across time. (From [Joint 1998])

As part of an effective implementation plan to further this, it is important to

promote awareness of security issues to a wide spectrum of users. Information systems

are today reaching a wide spectrum of users. Unfortunately, it is rare for non-security

inclined personnel to possess a natural inclination to take an active interest in IA issues.

How then can we overcome this gap? IA implementations face challenges in terms of

commitment and conformance, this could lead to less effective implementations, resulting

in an overall less effective operational IA posture.

An effective means for conducting training and education and to promote

awareness in IA is hence crucial. As highlighted by [Tanner 2002], commercial and

federal systems are targets of attack by criminals and foreign intelligence agencies.

Technical protection measures alone are insufficient to defend against these as human

errors and operators errors may leave systems open to other forms of attacks.

Consequently, security education, training and awareness constitute an integral part of

any effective layered defense strategy [DON 2000, Boyce 2002]. Usually, this involves

taking away the warfighter’s precious time from his/her operational functions to attend

3

security awareness training. This is both costly and time-consuming. In addition, it is

extremely difficult to conduct such training in a manner that would actually captivate the

student’s attention and interest, and hence improve on the retention of knowledge.

A novel alternative is to package the training in the form of interactive games. To

this end, NPS is leading the effort in the development of CyberCIEGE, which could

significantly contribute towards this goal. America’s Army has paved the way in

demonstrating the viability of using commercial-grade games to support a learning-

teaching objective [USArmy 2003] as have other similar efforts, demonstrated by the

Singapore Armed Forces [DSTA 2003], in utilizing games to supplement conventional

training.

CyberCIEGE (see Figure 2), originally conceived as “SimSecurity”, aims to

provide an IA teaching and learning laboratory in the form of an interactive and

entertaining commercial-grade PC-based game. It is conceived as a real-time interactive

game with each scenario serving to teach one or more IA concepts. Through playing the

game, the student gains insight into IA. The CyberCIEGE game itself is being developed

by Rivermind, Inc.

Figure 2. CyberCIEGE.

4

B. SCOPE
The scope of this thesis is to develop on top of the CyberCIEGE effort, to attempt

to answer the following questions:

1. How do we construct and organize scenarios to provide an educational

focus on an IA-specific topic?

2. What do we need in order to perform student assessment of the scenarios

played?

3. What interfaces must be introduced into CyberCIEGE to achieve this?

To explore to these questions, this thesis involves the analysis, design and

implementation of instructor tools while concurrently defining the necessary interfaces.

The instructor tools would enable the construction of campaigns by assembling a

collection of CyberCIEGE scenarios and provides a means for reviewing student

performance on the scenarios played.

In CyberCIEGE, each game plays as an individual scenario that serves to teach a

particular IA concept. However, more synergy can be gained if there is a higher-order

organization of these scenarios, such as by grouping around a set of desired concepts to

be taught, or by increasing the complexity of the scenarios built around a common theme.

Such a concept has been demonstrated in numerous strategy and action games such as

Warcraft, Starcraft, Warlords, etc. Rather than working with isolated scenarios, the

instructor can construct the scenarios to enable the student to progress from one scenario

to another in a logical fashion. In this manner, a library of scenarios can be reused and

readily assembled to craft different packages for different teaching objectives. We shall

refer to these as campaigns. Campaigns can then be customized to meet specific training

objectives and improve the relevance for the targeted student audience. A tool is hence

needed to enable the instructor to construct these campaigns. Such a tool is currently not

within the development scope of CyberCIEGE being undertaken by Rivermind.

Similarly, within the game being developed by Rivermind, there is little or no

opportunity for the instructor to review the game played by the student unless the

5

instructor is physically present and observes the progress of game play. Such an

approach is clearly not preferred and would defeat the objective of a virtual laboratory.

On the other hand, if the game play could be instrumented and significant events are

logged, the logs can then be used to analyze game decisions and the student’s progress.

This approach would enable After Action Reviews (AAR) to be carried, enabling the

instructor to provide the student constructive follow-up reviews and to further reinforce

the concepts being taught [DOA 1993, Morrison 1999].

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. REQUIREMENTS

A. EXISTING PRODUCTS
A search for existing games of a similar genre reveals the existence of

CyberProtect and the Information Security Wargaming System (ISWS) described in

[Saunders 2003] and AI Wars: The Awakening [Nexus 2003].

1. CyberProtect
CyberProtect is a turn-based game sponsored by the Office of the Assistant

Secretary of Defense for C3I and the IA Program Management Office of the Defense

Information Systems Agency (DISA). The game simulates a fairly simple, small

networked system with interconnections to other departmental systems, external sites and

the Internet. The game features an introductory tutorial to guide new players through the

basic of the game’s mechanics and a small reference guide to explain the purpose of each

of the countermeasures tools available. CyberProtect is fairly easy to learn, and with

these tools, new players can get going very quickly.

* Screenshot from CyberProtect.

Figure 3. CyberProtect - tools acquisition screen.

8

It is played over four quarters (i.e. turns) and revolves around the acquisition and

deployment of a limited set of abstract defensive information assurance measures which

are applied to a network of computers at the start of each quarter, as illustrated in Figures

3 and 4. These measures include training, redundant systems, access controls, virus

protection, backups, encryption, firewalls and intrusion detection systems, all with

varying levels of quality and effectiveness (i.e. low, medium or high), and cost. Given a

limited operating budget in the form of Resource Units (RUs), the player never has

enough to buy everything desired and careful choices would have to be made. The

acquired tools are then deployed on the various elements of the networked system.

* Screenshot from CyberProtect.

Figure 4. CyberProtect - system with countermeasures applied.

The networked system is then subjected to a variety of randomly generated

attacks at the end of each quarter. Specifically, these attacks include jamming, virus

infections, moles (insider actions), social engineering, packet sniffing, theft,

modification, spoofing and disaster effects (e.g. flooding). Each attack is evaluated

against the defensive counter-measures in place to determine the extent of success or

9

failure of system penetration. Feedback is provided indicating the type of attack, origin

(which external site or insider) and status of the attack (successful or failed). A

multimedia narration of the attack is also available. With these clues, the player can then

reexamine the existing countermeasures implemented to figure out why the attacks were

successful and proceed to acquire further measures or upgrade existing ones to better

improve the defensive posture.

At the end of the quarter, a summary and score of the player’s progress is given.

Success in the game is defined as achieving a final score of 90 or more, thus providing a

quantifiable measure.

2. Information Security Wargaming System (ISWS)
ISWS, developed by Concurrent Technologies Corporation (CTC) for the

National Defense University, is a tutorial type simulation that provides in-depth focus on

specific attacks, primarily centered on network-based attacks, and the applicable

defensive measures. The package has the following teaching objectives:

• Understand network configuration to defend against attacks.

• Identify and recommend countermeasures to network attacks.

• Identify types of security measures to protect and maintain data integrity.

• Make better strategic decisions related to the protection of network

attacks.

A short tutorial guides the student through the various phases of implementing the

defenses and the tutorial functionalities (see Figure 5).

10

* Screenshot from ISWS.

Figure 5. ISWS - tutorial.

The various forms of attacks are grouped into 10 classes, namely - disruption,

modification, destruction, infection, intrusion, theft/fraud, exploitation and observation.

From each class of attacks, the student selects a specific attack and ISWS will explain the

behavior of a system when subjected to such an attack (Figure 6). The student can then

choose from a list of defensive options to be employed. ISWS presents a fairly detailed

explanation of the pre-conditions and behavior of a system when undergoing the attack

using multimedia presentations.

The student then proceeds to select from a palette of safeguards for each phase

against the specific attack. These phases include protection, detection, assessment,

recovery and treatment. When applied, the system assesses and provides feedback on the

effectiveness of the set of safeguards selected. The student is free to examine various

what-if combinations of safeguards or to proceed to the next phase.

Upon completing the phases, the student is presented with the “official” solution.

11

* Screenshot from ISWS.

Figure 6. ISWS - attack scenario.

3. Artificial Intelligence (AI) Wars: The Awakening
AIWars [Nexus 2003] is a futuristic first-person 3D real-time action-strategy

game published by Nexus Interactive Studios Inc. It is targeted at the gaming community

and is intended purely for its entertainment value only.

The player has to conduct research in various areas in order to gain more powerful

or better software and hardware. In order to understand the cyber-environment, referred

to as the Net, the player has to map out the different systems and gather datablocks to sell

or to keep. The player possesses various defensive (e.g. Masquerade, Firewall, Antivirus,

Spoof, etc) and offensive (Crack, Viral Infections, Infinite Recursive Calculations (IRC),

etc) options with which to interact within the Net.

Characters with different predispositions (i.e. usually friendly, sometimes

unfriendly) exist in the NET and they can be interacted with. However, if the player goes

into a system and starts attacking a Warden character, the player’s name will be placed in

12

a hacker log. The next time that the player enters the system, the player would be

attacked on sight.

A system is divided into public (e.g. online stores, public datastores, news groups

and chat rooms) and private nodes (e.g. system cores, secure datastore and private

meeting rooms) with passwords required for gaining entry into a private node. Private

nodes are further guarded by a Warden. Without the password, the player can force an

entry by launching the Crack software against the Warden. Attempts at such password

cracking can trigger an alarm and result in detection. The latter can be mitigated if the

player pre-activated the Masquerade software, otherwise the Warden will launch an

active alarm and record the player as an intruder. Subsequent character interactions

within the system would be hostile and system elements will attempt to eradicate the

player. To clear the alarms, the player has to reach the system’s Core and interface with it

to plant a Backdoor.

Figure 7. AIWars - Inside a Router. (From [Nexus 2003]).

Success in the game is achieved in any one of three ways: taking control of the

net, transferring the player’s consciousness and memories into the Net to achieve

immortality or by bringing the player’s agent to sentience. Taking control of the Net

requires that the player place a Backdoor in the Core of each of the key systems. The

13

immortality option requires development of six specific technologies, while the agent

sentience option requires a different set of 4 technologies and acquisition of a lot of data

for the agent to evolve.

B. BROAD DESIGN OBJECTIVES
[Tanner 2002] hypothesized that simulation-based computer security awareness

training can be more focused and less expensive than a lecture- or laboratory-based

courses. The design objectives of such a class of tool are defined as follows:

1. Content: Understand the Threat
The first step is to know the enemy who may range from novice hackers and

script-kiddies to state-sponsored organized hackers. Novice hackers typically employ

readily available tools to exploit known system vulnerabilities. Although pervasive,

these are relatively easily mitigated. In contrast, state-sponsored organized hackers are

patient, methodical and not limited to well-known vulnerabilities and readily available

attack tools. Their activities tend to be covert and not easily detectable.

2. Content: Awareness of Known Weakness and Attack Techniques
The objective for the student is to learn about the weaknesses of a networked

computer system and understand how these may be exploited by hackers. The student

should be aware of which vulnerabilities can be eliminated and which are unavoidable

exposures inherent in the design of the system.

3. Pedagogy: Support Multiple Training Objectives
The purpose of awareness training is to train the student. To achieve this goal,

the following training objectives may be relevant:

a. Connecting concepts to practice.

b. Repeatability.

c. Progressing from novice through more sophisticated scenarios.

d. Examining “what if’s” by reconfiguring and trying again.

e. Practicing skills in a realistic training environment.

f. Developing problem-solving and decision-making skills.

14

g. Learning to recognize operational indicators of normal, abnormal

and emergency conditions.

4. Pedagogy: Support Multiple Perspectives
A crucial pedagogical need is to enable the student to understand the cause-and-

effect relationships, and to examine them from the perspective of the attacker, defender

or the forensic analyst.

5. Content: Model the Trainee’s Environment
By matching the simulated environment with the trainee’s operational

environment, the training can be more relevant, in-depth, focused and effective.

6. Portable, Self Contained Laboratory
As mentioned before, pulling a warfighter from his/her primary operational duty

for training consumes valuable time and usually undesirable. By making the tool

portable and self-contained, it can significantly expand the reach of the tool by placing it

in the hands of the student and enable training at their convenience.

C. COMPARATIVE REVIEW
With the objectives thus defined by [Tanner 2002], we will now re-examine the

three games discussed earlier. Each of the three games described are distinctly different

but each has some significant attributes that would contribute towards the objective of

education, training and awareness in information assurance. We shall highlight their

respective strengths and weaknesses here.

CyberProtect is a turn-based game which provides a macro view of resource

management and deployment of abstract defensive countermeasures at a system-level. It

attempts to teach some broad concepts such as the need for multiple layers of defenses

and introduces the various forms of general attacks, including social engineering which is

sometimes not apparent. Correctness of concepts is fairly high, although at a fairly

abstract level. The abstraction simplifications do help to make the game easy to learn and

play. Unfortunately, the canned environment presented (i.e. the fixed network) offers

little replay value and the player will soon run out of concepts to explore.

ISWS is a tutorial based multimedia package which takes a detail look at each of

the network-based exploitations. It is clearly focused on teaching the student specific

forms of attacks in isolation and the ways to mitigate each of them. The what-if’s option

15

in selecting a package of safeguards affords the student some room for exploration.

However, it does not provide a temporal element and the effects of organized multi-

faceted attacks. The general lack of interactivity between the student and the game

would soon turn it into a typical multimedia presentation. Certainly, it offers the least in

terms of replay value.

AIWars is a real-time 3D entertainment game. In this respect, its re-playability is

probably the highest and is most likely to captivate the student/player. It clearly carries

across numerous concepts although the concepts are significantly dramatized for

increased playability and hence requires the student to be able to relate the corresponding

metaphors with current realities.

 CyberProtect ISWS AIWars

Format Educational game. Tutorial. Entertainment game.

Understanding of the

threat

Yes, but it is not clear

what the organizational

security policy is?

Yes, but addresses each

form of attack only in

isolation.

Uncertain.

Awareness of known

weaknesses and attack

techniques

Yes. Yes. Yes.

Connecting concepts to

practice

Yes, at a system-level. Yes, for network-

specific attacks.

Yes, at a system-level.

Repeatability Limited replay value. Low. High.

Progression from

novice attacks to more

sophisticated versions

No. No. No.

Examine “what if’s” Limited ability. Yes, only with respect to

a single attack type.

Yes.

Realistic training

environment

Yes. Somewhat. Generally no, as it uses

futuristic connotations.

Develop problem-

solving and decision-

making skills

Yes. Yes, but constructs are

canned.

Yes.

16

Learn to recognize

operational indicators

Limited. No. Yes.

Support for multiple

perspectives

No. Only defender’s

view point is supported.

No. Only defender’s

view point is supported.

Somewhat, as both

attacker and defender

perspectives are played.

Model the student’s

environment

No. No. No.

Portable, self-

contained laboratory

Yes. Yes. Yes.

Table 1 Comparison of products reviewed.

CyberProtect provides a summary score at the end of each quarter and at the end

of the game, thus providing a quantifiable measure. Unfortunately, the player is not

provided with any indication of the intended security policy. For instance, there is no

notion of what resources are being protected, and what the threat is. Consequently, the

player is left clueless regarding the appropriate strategy to apply. Thus the score does not

provide any obvious relationship to the success of the security measures implemented.

From actual games played, the scores do not appear to be useful for comparative

purposes. One can apply very few and poor measures and yet achieve a score of 99,

while in another game, despite applying similar measures, a player can score as badly as

60. The wide variance stems from the randomness of the attacks. A player who happens

to be subjected to an attack for which a defensive measure happens to be already in place

will fare very well. In a separate run with the same measures in place, the player may be

faced with a flood of attacks for which the same measures are unfortunately ineffective.

In this case, the player will fare very poorly. Hence the resultant score does not serve as

a useful measure of effectiveness and no real conclusions can actually be drawn.

ISWS on the other hand, only addresses the security objective from the narrow

viewpoint of defending against a single threat. Hence, it does not provide a holistic view

at an organizational level.

Both CyberProtect and ISWS are fairly restrictive in terms of options and

flexibility. As the game scenarios are fairly static, there is little room for exploration and

replay value is limited. CyberProtect for instance, has only a single scenario, although

17

randomized attacks generated do create variety. ISWS has no variations at all and plays

in a strictly tutorial-like fashion. Both these games do have a very strong flavor of truism

to the concepts being taught and are therefore high in educational value.

AIWars’ 3D real-time environment is clearly a step above both CyberProtect and

ISWS in terms of gaming playability and hence the potential ability to captivate the

player. Replay value is high; however, this is achieved at the sacrifice of realism.

D. CYBERCIEGE
CyberCIEGE, as described in [Irvine 2003], simulates a range of scenarios

involving networked computer systems with the player assuming the defender role and

the computer assuming the attacker role. The player needs to construct computer

networks with components such as servers and workstations, and apply appropriate

security measures to ensure that the system’s security posture is able to meet the

organizational goals. The game lies in the tension created by the competing goals of

efficient and affordable access to assets and protection of assets from unauthorized

disclosures or modification. This is a significant improvement over that of CyberProtect

which had only considered the application of protection mechanisms without clearly

articulating the organization goals.

Unlike CyberProtect which has a canned scenario, CyberCIEGE has a wider

range of options, allowing the player to construct, interconnect and apply protection of

the network as well. The player will make decisions that affect the behavior of a set of

virtual user characters. Hostile game characters may develop and attack the system,

ranging from vandals, disgruntled insiders, incompetent users, to professional attackers.

This offers a much richer set of attacks than when compared to CyberProtect.

[Irvine 2003] puts up a case to illustrate the feasibility of having a computer

security game that can be both fun and educational. Indeed, CyberCIEGE shares many of

the playability attributes of AIWars. Both cast the player into a real-time 3D game world

where the player has to interact with a constantly changing environment. In

CyberCIEGE, the player starts the game with a finite budget and has to perform resource

management to establish an ever-growing enterprise, reaping the benefit of productive

users while balancing benefits of protecting their assets against attackers. The resource

18

management aspects are far more dynamic than that in CyberProtect and are probably

closer to that of AIWars.

 CyberCIEGE

Format Educational and entertainment

game.

Understanding of the threat Yes.

Awareness of known weaknesses and attack techniques Yes.

Connecting concepts to practice Yes.

Repeatability Yes.

Progression from novice attacks to more sophisticated versions No.

Examine “what if’s” Yes.

Realistic training environment Yes.

Develop problem-solving and decision-making skills Yes.

Learn to recognize operational indicators Yes.

Support for multiple perspectives No. Only defender’s view point is

supported.

Model the student’s environment Possibly.

Portable, self-contained laboratory Yes.

Table 2 Comparison with CyberCIEGE.

E. THE GAPS
Based on its current design, CyberCIEGE matches most of the design

requirements as proposed by [Tanner 2002]. However, there are certain areas that require

further work. Specifically, these will serve as the requirements of the system that we

shall develop in this thesis:

1. Campaign Play
CyberCIEGE improves upon the designs of CyberProtect and ISWS by

supporting multiple scenarios as opposed to fairly static scenarios. This improvement

can be taken a step further by providing a means for a student to progress from novice to

sophisticated scenarios as suggested by [Tanner 2002]. This suggests a need for an

19

instructor tool for ordering a sequence of scenarios that progressively introduces new

concepts and complexities to the student or to enable the assembly of a set of related

scenarios built around a common theme.

In order to support the concept of a campaign, there is a need to introduce further

semantics to the current structure of the scenario definition file. The scenario definition

file defines the goals of the organization and the resource options available to the student.

This file is fed in as a input to the CyberCIEGE game to initialize the game and to setup

the scenario environment that the student will play in. It would be particularly useful to

introduce a taxonomy of classifications to each scenario so that instructors can easily

assemble campaigns by stringing together relevant scenarios based on a subject focus,

rather than having to scan through each scenario one at a time to determine the scope of

each scenario. A tool can therefore be developed to support the definition of a taxonomy

tree. The Scenario Builder, who is responsible for constructing these scenarios, would

then associate the relevant taxonomy tags to each scenario. The latter requirement for

taxonomy tagging will be undertaken by a separate thesis effort that involves the

development of the Scenario Definition Tool.

As CyberCIEGE currently plays scenarios independently, we have to provide the

student with a tool to play through the scenarios of the campaign. This also suggests a

need to define some means to interface with the CyberCIEGE game itself.

2. After-Action Reviews
Although not defined by [Tanner 2002], it is clear that a training package could be

significantly enhanced if supported by some means to analyze student progress. This

brings forth the idea of After-Action Reviews (AARs). As highlighted in [DOA 1993],

AARs helps bridge the gap between concept and practice. Problem-solving skills can be

improved through AARs. To achieve this, the instructor requires a tool to reconstruct

significant elements of the game so that player progress and decisions can be reviewed.

Through a temporal ordering of transpired events, we would wish to be able to

answer these questions as suggested by [DOA 1993]:

a. What happened?

b. Why did it happen?

20

c. How can performance be improved?

The tool can also help to provide useful metrics of the student’s progress, such as

the amount of time taken, and to present snapshots of the player’s game state at

significant stages for review.

This scheme is only possible if there is a means to perform real-time interaction

with CyberCIEGE to monitor events, or if event logging is performed. To achieve the

objective of keeping CyberCIEGE “portable” and widely available, it is clearly not

desirable to unnecessarily encumber it with real-time monitoring from an instructor

station. Further, it would be undesirable for the instructor to monitor multiple game

sessions (i.e. different students) in such a real-time manner. Hence, the latter approach of

event logging for post-game analysis is a better fit for the purpose of AAR. In addition,

this would further support the use of CyberCIEGE as a distance learning tool. The event

log will permit asynchronous monitoring and student assessment. In order to achieve

this, an event logging construct has to be built into the CyberCIEGE game itself. This

thesis will therefore define the structure and organization of the event log.

3. Support for Multiple Perspectives
CyberCIEGE is currently designed to enable the player to participate only in the

defender’s role. To enable the player to participate in attacker or forensic roles as

suggested by [Tanner 2002] would require changes to CyberCIEGE itself and hence will

not be explored within the scope of this thesis. Futher, [Irvine 2003] has also indicated

that this is planned for a future iteration of CyberCIEGE’s development.

21

III. ANALYSIS

A. CONCEPT OF OPERATIONS
We shall next describe the broad concept of operations for the tools to be

developed (see III.B for descriptions of the respective actors):

The Taxonomy Manager will manage a taxonomy of IA terms. When scenarios

are created, this taxonomy of terms are used by the Scenario Builder to catalog the

scenarios. This will facilitate convenient downstream retrieval when we need to select

scenarios for inclusion into a campaign. The taxonomy tagging of scenarios will not be

encompassed within the scope of this thesis.

The Instructor can then proceed to create campaigns, where each campaign is

made up of a sequence of previously developed scenarios. Once a campaign definition is

completed, it can be released and is ready for use by the Student.

The Student will proceed to launch CyberCIEGE to play each of the scenarios.

During game play, CyberCIEGE will generate events which are recorded into event logs.

The resultant event logs are then used for analysis by the Instructor.

B. ACTORS
An actor, as defined in [Leffingwell 1999], is “someone or something, outside the

system, that interacts with the system”. This includes users who have a role to play and

external systems that are interfaced with. Five such actors are defined. Of these, the

Taxonomy Manager, Instructor and Student are users who perform a role, while

CyberCIEGE and the Scenario Definition Tool are external systems (see Figure 8).

CyberCIEGEInstructor StudentTaxonomy Manager Scenario Definition Tool

Figure 8. Actor survey.

22

1. Taxonomy Manager
The Taxonomy Manager is a user responsible for managing the taxonomy library

of terms.

2. Instructor
The Instructor is a user responsible for constructing campaigns with a teaching

objective in mind and for conducting the AAR with the Student.

3. Student
The Student is responsible for playing through the ordered set of scenarios of a

campaign to learn and apply information assurance concepts.

4. CyberCIEGE
CyberCIEGE is the game itself and is treated as an external system.

5. Scenario Definition Tool
The Scenario Definition Tool is an external system used to construct scenario

definitions.

C. USE CASES
The Use Case modeling approach of the Unified Process, as described by

[Jacobson 1999] and [Leffingwell 1999] is adopted for the development effort.

Thesis Modules

1. Manage Taxonomy

Taxonomy Manager

Instructor

Student

2. Setup Campaign

3. Release Campaign

4. Conduct AAR

5. Load Campaign

6. Play Scenario

CyberCIEGE

Scenario Definition Tool

Figure 9. Use case model survey.

23

The detailed use case specifications are provided in Appendix A. Here we shall

briefly summarize and explain the purpose of the use cases defined.

1. [UC.1] Manage Taxonomy
In this use case, The Taxonomy Manager defines and manages the taxonomy of

security terms. The terms are created in a hierarchical order and presented as a tree

structure.

This is desired in order to establish a common vocabulary for the taxonomy of

terms which are used subsequently by people designing scenarios using the Scenario

Definition Tool for purposes of cataloging the scenarios, and again in the Campaign

Manager to search and retrieve scenarios.

2. [UC.2] Setup Campaign
In this use case, the Instructor either selects an existing campaign or creates a new

campaign to work with. The Instructor can then name and describe the objectives of the

campaign, and select pre-created scenarios for inclusion in the campaign. A filter can be

defined to select specific taxonomy terms, thereby narrowing the set of selectable

scenarios to those tagged with the relevant taxonomy terms.

Essentially, this use case has the responsibility for creating and editing the

campaign definition.

3. [UC.3] Release Campaign
Once the campaign has been fully defined, this use case supports its release for

play.

In this use case, a campaign which is ready for release undergoes an integrity

check to finalize the campaign package. This ensures that the referenced Scenario

Definition Files are physically present. The campaign is then base-lined and the

Campaign Definition File (campaign.xml) and the respective Scenario Definition Files

(*.sdf) are copied into a directory defined by the Instructor. The campaign is now ready

for the Student to play and is no longer editable.

4. [UC.4] Conduct After-Action Review (AAR)
Once the scenario is started in CyberCIEGE, event logs will begin to be

generated. The Instructor can then begin to perform AAR activities. It is not necessary

24

to wait till the scenario has been fully played out to do so.

In this use case, the Instructor selects a campaign to be reviewed by loading the

Campaign Definition File. Summary information of all students involved are retrieved

from their respective event log files and is displayed. The Instructor is therefore

presented with a quick overview of the current status of all his students. The Instructor

may find a need to examine further details of a particular Student and can do so by

selecting and calling up the event log pertaining to that Student. The Instructor can then

analyze the event logs in detail. Where a snapshot of the game “state” has been saved,

the Instructor can call it up for analysis and discussion with the Student involved. As the

snapshot is implemented as a saved game in CyberCIEGE, we only need to launch

CyberCIEGE with the saved game reloaded to restore the game “state”.

5. [UC.5] Load Campaign
With the campaign released, each Student can proceed to play the selected

scenarios of the campaign.

In this use case, the Student loads the campaign in order to review the objectives

of the campaign, and the scenarios to be played.

6. [UC.6] Play Scenario
In this use case, the Student proceeds to play a scenario from the campaign.

CyberCIEGE is automatically launched with the scenario loaded at its start state.

The Student will play out the scenario in CyberCIEGE. As the game progresses,

CyberCIEGE will automatically log events taking place.

D. INTERFACES WITH CYBERCIEGE (RIVERMIND)
The CyberCIEGE game engine itself is being developed by Rivermind Inc.

Interfaces have to be clearly defined to facilitate parallel work. The detailed interface

specifications with Rivermind are presented in Appendix C. These include specific

requirements for the Scenario Definition File format, the CyberCIEGE command line

parameter specification and the Event Log File format.

1. Scenario Definition File Format
When this thesis effort first began, the Scenario Definition File had been partially

defined and was still a work-in-progress. It was felt that in order to facilitate the

25

campaign construction; scenarios would need to be given a title. Similarly, in order to

have meaningful AAR, the need for game termination conditions were also raised - i.e. to

stop the CyberCIEGE game when a win or loss condition is met. Consequently, these

were introduced into the Scenario Definition File format.

2. Command-line Parameters
We also need to be able to launch CyberCIEGE under two (subsequently three)

situations. Firstly, the Student needs to launch a specific scenario with event logging

turned on, in order to play the game. Secondly, the Instructor may also want to do the

same in order to examine the start state of a scenario. In this case however, the event

logging would not be turned on. A command-line syntax was thus defined to allow these

variations:

> CyberCIEGE -s <Scenario File> [-i <IDTag> -e <EventLog>]

Finally, it was decided that to support the capability to save game states at defined

points of a game, this would be implemented by simply having CyberCIEGE to perform

a save game function. These defined points would be scripted into the scenario definition

as conditions and event triggers. During campaign analysis, we would use the Campaign

Analyzer to call up CyberCIEGE with the saved game reloaded. Hence, an additional

command-line option was introduced to do this:

> CyberCIEGE -l <Saved File>

3. Event Logging
Event logging is needed so that we would be able to use the logs to review game

progress. The question is, under what circumstance should a log be recorded and how

should these be defined? Fixed event loggings would require that all logging points be

coded into CyberCIEGE itself. This is clearly inflexible. A scriptable form of logging is

preferred so that the Scenario Builder has some latitude in defining under what conditions

to trigger a log record, and to specify what should be logged. The syntax and semantics

to support this has been included in the Scenario Definition File format.

The Event Log File format was correspondingly defined, and the specification is

detailed in Appendix C. The file format is based on XML [W3C 2003] which is an

26

industry-wide open standard. Figure 8 illustrates a sample fragment of the Event Log

File:

<summaryevent>
 <dtimereal>20030818193015</dtimereal>
 <dtimegame>20030131062359</dtimegame>
 <daily>
 <budget>10000</budget>
 <sales>0</sales>
 <salaries>5000</salaries>
 <hardwareexp>0</hardwareexp>
 <softwareexp>0</softwareexp>
 <misc>0</misc>
 <cash>5000</cash>
 </daily>
</summaryevent>
<controlevent>
 <dtimereal>20030818203015</dtimereal>
 <dtimegame>20030131070100</dtimegame>
 <savetrigger>
 <tagdata>#1</tagdata>
 <filename>1_scenario1_0001.sav</filename>
 </savetrigger>
</controlevent>
<userevent>
 <dtimereal>20030818193015</dtimereal>
 <dtimegame>20030131062359</dtimegame>
 <hire>
 <name>Mr. Gates</name>
 <salary>5000</salary>
 </hire>
</userevent>
<componentevent>
 <dtimereal>20030818193015</dtimereal>
 <dtimegame>20030131062359</dtimegame>
 <buy>
 <catalogname>SuperX 9000 Server</catalogname>
 <componentname>dbserver#1</componentname>
 <cost>3000</cost>
 </buy>
</componentevent>

Figure 10. Sample fragment of an Event Log File.

27

E. INTERFACES WITH SCENARIO EDITOR
The Scenario Editor is being developed by Ken Johns in his thesis. As the

Scenario Editor would need to perform the Taxonomy-tagging required by the Campaign

Manager module, coordination was required.

1. Taxonomy File Format
The specification of the Taxonomy File format is detailed in Appendix D. The

Taxonomy File adopts the XML format to organize the taxonomy terms in a hierarchical

order. Shown here is a sample fragment of the Taxonomy File:

<simsecuritytaxonomy>
 <tnode>
 <tname>Encryption</tname>
 <tnode>
 <tname>Public Key Encryption</tname>
 <tnode>
 <tname>RSA</tname>
 </tnode>
 </tnode>
 <tnode>
 <tname>Symmetric Key Encryption</tname>
 </tnode>
 </tnode>
 <tnode>
 <tname>E-voting</tname>
 </tnode>
</simsecuritytaxonomy>

Figure 11. Sample fragment of a Taxonomy File.

2. Embedded Taxonomy Tags in the Scenario Definition File
Because the taxonomy tagging is not an integral part of a scenario definition, it

was decided that these internal tagging would not be specified as part of the standard

Scenario Definition File format. Instead, we take advantage of the embedded comments

construct of the scenario definition file to provide the needed extensibility. The symbol

“//”, just as in C++ and Java, is used in the Scenario Definition File to denote that all

character strings following it up to the end-of-line are part of a comment and are ignored

during scenario parsing.

Hence, the taxonomy tags construct would appear with the comments prefix as

shown in the following example in the Scenario Definition File, bounded by the

28

“TaxonomyTag:” and “:end” pair. The text in between would correspond to <tnode>s

shown in Figure 11.

:
// TaxonomyTag: Public Key Encryption :end
// TaxonomyTag: E-voting :end
:

Figure 12. Taxonomy tag embedded in a Scenario Definition File.

29

IV. DESIGN & IMPLEMENTATION

A. DESIGN
In general, the approach taken was to define a Design Use Case for each Analysis

Use Case; hence there is a one-to-one mapping from analysis to design.

Analysis Use Case

Design Use Case

Entity

Control Boundary

get()store()
do()

process()

Builder

load()

save()

Figure 13. Transitioning from analysis to design.

As described in [Bruegge 2000], an analysis object model consists of entity,

boundary and control objects. These stereotypes are defined as such:

• Entity - An entity object represents persistent information tracked by the

system.

• Boundary - A boundary object represents the interactions between actors

and the system.

• Control - A control object represents the tasks that are performed by the

user and supported by the system.

In addition, a Builder object stereotype is introduced. It is an object to interact

with a persistent store to perform load and save operations.

This structure for organizing analysis object models was carried over into the

design model. Thus, the architectural look-and-feel for each Design Use Case is typically

as shown in Figure 14:

Entity

Control Boundary

get()store()
do()

process()

Builder

load()

save()

Figure 14. Design model template.

30

A Control object is defined for each use case. This object handles all the

coordination between Graphical User Interface (GUI) objects and entity objects.

GUI objects are created for each user interface that interacts with the actor.

Typically, each use case has a main GUI form, supported by some secondary GUIs. GUI

objects handle all user interactions, but any processing tasks would be passed onto the

Control object to perform.

In sharp contrast, Entity objects are typically passive. These are created for each

object whose principle responsibility it is to hold information. In addition, Builder

objects were also created to handle the reading and writing of entity objects to the file

system as XML files.

The respective Design Use Cases are extensively described in Appendix B,

illustrated with Collaboration Diagrams.

B. IMPLEMENTATION
The following table maps the realization of the respective use cases to four

software modules developed in this thesis.

Application

Modules

Analysis/Design Use Cases

TaxonomyManager [UC.1] Manage Taxonomy

CampaignManager [UC.2] Setup Campaign, [UC.3] Release Campaign

CampaignPlayer [UC.5] Load Campaign, [UC.6] Play Campaign

CampaignAnalyzer [UC.4] Conduct AAR

Table 3 Use case realization.

All the software modules are implemented using the Java 2 SDK v1.4.1 [Sun

2003].

Structurally, the implementation modules are organized into two layers as

illustrated in the figure below. The respective application modules (packages) are

dependent on the Utilities package. Brief descriptions of the respective code units are

provided in Appendix E.

31

Campaign AnalyzerCampaign Manager Campaign PlayerTaxonomy Manager

Utilities

Figure 15. Layered architecture.

The inter-relationship between the modules and the various data files is illustrated

in the next block diagram. As shown, the darker rectangle represents the boundary that is

within the scope of this thesis.

Scenario Definition Tool

Taxonomy Manager

Campaign Manager

Campaign Analyzer

Scenario Definition File

Campaign Definition File

Taxonomy File

Event Log File

CyberCIEGECampaign Player

Figure 16. Inter-relationships between the modules and files.

The Taxonomy Manager is responsible for managing the taxonomy terms stored

in the Taxonomy File. The later is then used by the Scenario Editor to select Taxonomy

terms to be tagged to the Scenario Definition Files that it is creating.

32

The Campaign Manager processes the respective Scenario Definition Files to

obtain a list of scenarios. Specific scenarios are then selected for inclusion into the

campaign. Subsequently, the Campaign Manager creates the Campaign Definition File.

The Campaign Player loads the Campaign Definition File and selects a scenario to

play. This results in CyberCIEGE being launched using the Scenario Definition File (not

shown in figure). Event Log Files are generated by CyberCIEGE.

Finally, the Campaign Analyzer loads a Campaign Definition File and parses the

related Scenario Definition Files. Selectively, Event Log Files may be selected to be

viewed as well.

C. INTEGRATION
One of the key limitations of this effort is that the CyberCIEGE development is

not due for completion till early 2004 while this thesis was to be completed by Dec 2003.

In addition, the parallel thesis effort by Ken Johns to develop the Scenario Definition

Tool is also not due for completion until Mar 2003.

Due to this mismatch of schedules, stubs were used in lieu of integration testing

of the interfaces with CyberCIEGE. Similarly, taxonomy-tagged Scenario Definition

Files and the Event Log Files were artificially hand-created to simulate these artifacts.

33

V. DISCUSSION

A. RESULTS
1. Application Modules
The four application modules have been developed. Shown here are screenshots

from the respective modules. This section also serves as a user guide.

a. Taxonomy Manager
In the Taxonomy Manager screen below (Figure 17), we can see the

hierarchical structure of the taxonomy terms. The Taxonomy Manager (actor) can add,

edit or delete the respective terms. Deleting a parent node will cause all the sub-nodes to

be deleted as well.

Figure 17. Taxonomy Manager.

34

Once all the desired changes have been made, the changes can be saved

into the persistent store - i.e. as an XML file called “Taxonomy.xml”.

b. Campaign Manager
In the main screen of the Campaign Manager module (Figure 18), the

Instructor can review the existing campaigns which have been defined. New campaigns

can be created from here, while existing campaigns can be edited or deleted.

Figure 18. Campaign Manager.

Creating a new campaign or editing an existing one will bring up the

Campaign screen as shown in Figure 19.

35

Figure 19. Campaign Manager - constructing the campaign.

Here, the Instructor can modify the name and description of the campaign,

as well as to select and organize the scenarios. Additional scenarios can be added while

existing selections can be dropped. The Instructor can move scenarios up or down,

organizing them in the sequence desired.

To narrow the scenarios selectable, the Instructor can call up the filter to

define the desired taxonomy. This is especially useful if the campaign is being created

around a specific theme. By choosing the relevant taxonomy terms that pertain to this

theme, the list of selectable scenarios is reduced to just those scenarios that exhibit one or

more of the taxonomy terms selected.

36

Figure 20. Campaign Manager - taxonomy-based scenario filter.

In the filter screen shown in Figure 20 for instance, if the taxonomy term

“Public Key Encryption” is selected, then any scenario which has been tagged with either

“Public Key Encryption” or “RSA” would be selectable.

Clearing the filter implies that no taxonomy filtering is to be applied.

Therefore, all scenarios would be selectable.

c. Campaign Player
The Student will be primarily using this module to launch scenarios to

play. Selecting a campaign will bring up the campaign details as defined by the

Instructor. Scrolling through each of the scenarios, the Student can review the

description (i.e. briefing notes) of the selected scenario.

37

Figure 21. Campaign Player.

Once the Student is ready, he/she can play that scenario. This will cause

the CyberCIEGE game to be launched with that scenario.

d. Campaign Analyzer
The Instructor uses the Campaign Analyzer to view the progress of the

Students. By selecting a campaign, the Campaign Analyzer will call up all the details of

the campaign. The module also automatically checks for the status of each Student and

summarizes their current status on the display as shown at the bottom of the next screen.

38

Figure 22. Campaign Analyzer.

The status summary can provide an indication of the Student’s status to

the Instructor. The status column indicates whether the Student has started (“Started”,

“Not started”) or completed (“Won”, “Lost”) the scenario. Other information include the

Student’s current budget status, the time that the scenario was started and ended, and the

total number of days elapsed in terms of real gaming time. At a glance, the Instructor

will be able to identify Students who may be way behind schedule on that scenario - e.g.

not started yet, or started but has yet to complete. Or the Instructor may notice that a

particular Student is taking a lot more time to play than the rest. This may warrant

39

further investigation of that particular Student’s progress. To accomplish this, the

Instructor can choose to view that Student’s logs to find out the cause.

Choosing “View Log” will bring up the Event Log Analyzer (Figure 23).

Here, the Instructor can systematically browse through each of the events logged for that

Student’s game.

Figure 23. Event Log Analyzer.

40

For the scope of this thesis, only a partial set of events are processed and

presented. These are shown in Table 4:

EventType Event Sub-

Type

Properties

debuglog tagdata, message

logtrigger tagdata, message

popuptrigger tagdata, message

tickertrigger tagdata, message

controlevent

savetrigger tagdata, filename

start

end “win” or “lose”

pause

resume

save

exit

gameevent

quit

daily budget, status, salaries, hardwareexp, softwareexp, misc, cash summaryevent

monthly budget, status, salaries, hardwareexp, softwareexp, misc, cash

hire name, salary userevent

fire name, salary

buy catalogname, componentname, cost

sell catalogname, componentname, cost

componentevent

configure

indicator securitytarget, targetname, message alertevent

attack securitytarget, targetname, attacktype, result

Table 4 Implemented set of events.

Where a game saved state has been recorded, the Instructor can review

that saved state. Effectively, this will bring up the CyberCIEGE game, loading the saved

41

game file. The Instructor can then examine the state of the Student’s game within

CyberCIEGE itself to gain insights.

2. Interface Specifications
Interface specifications are essential to ensure that different developers are able to

work in parallel loosely-coupled, whilst developing modules that can be tightly-

integrated.

Various interface specifications were defined in the course of this thesis research.

These are described in more details in Appendices B and C. This has enabled the

respective parties (i.e. Rivermind and Ken Johns) to proceed with their development

efforts in parallel. Their respective efforts are not due for completion until much later

downstream.

3. Influences on the Design of CyberCIEGE
During the early and mid stages of this thesis research, NPS and Rivermind were

engaged in active discussions defining the Scenario Definition Format. In these early

stages, the focus of the discussions was generally centered on what the Scenario Builder

needed in order to present CyberCIEGE with the desired scenario. This involved

numerous meeting iterations defining the various elements of the game; such as the

components, and the security and configuration attributes.

As this thesis effort was focused on developing tool support for the Instructor, it

helped to bring a new perspective to these discussions. In particular, we had to examine

how an Instructor interacts with CyberCIEGE in various ways. For instance, to effect

some form of “control” of the CyberCIEGE game itself, command-line parameter

constructs were defined to launch the CyberCIEGE game to do different things.

Conditions and triggers had to be defined within the Scenario Definition File itself to

enable the Scenario Builder to influence the game as it progresses. And finally, to extract

meaningful data from a game in progress which can be used to analyze the Student’s

progress. These helped to ensure the completeness of the Scenario Definition Format

specification effort and serves as a form of validation check of CyberCIEGE’s design.

In particular, we note that in addition to presenting the scenario to the game

engine, the scenario definition also has to provide scripted control of the game so that an

42

Instructor is able to conduct post-game analysis (or after-action reviews).

In the same light, there are also various thesis research initiatives being

undertaken, involving the development of educational scenarios. To facilitate their

research efforts, it would be necessary for the CyberCIEGE game to be able to produce

results which can be analyzed. The event logging mechanism would be a useful means to

support this.

B. THE QUESTIONS ANSWERED
This thesis was initiated to examine three key questions. We shall now discuss

these.

The first question was, “How do we construct and organize scenarios to provide

an educational focus on an IA-specific topic?” What we have done has been to

demonstrate the viability of layering the notion of a campaign on top of the scenario to

achieve this. By organizing a set of scenarios into a campaign and having the student

play through the scenarios, we enable the student to step through progressive scenarios,

learning concepts one step at a time.

In order to facilitate campaign construction, we have further identified that it is

beneficial to support a notion of taxonomy-tagging of scenarios. As this function is

optimally best performed by the Scenario Builder, this has also resulted in additional

requirements for the Scenario Editor.

The second question was, “What do we need in order to perform student

assessment of the scenarios played?” As has been extensively discussed, this involved

the introduction of conditions and triggers into the scenario design, and to have the

CyberCIEGE game to perform event logging. Parsing the event logs, we can then present

the necessary information to the Instructor to perform analysis.

Finally, the last question was, “What interfaces must be introduced into

CyberCIEGE to achieve this?” This is answered through the interface specifications

defined in Appendix C.

43

VI. CONCLUSION

A. CONCLUSION
With the concept and the tools developed from this thesis research, it is now

possible to make the CyberCIEGE game into a more complete instructional package. By

layering the idea of a campaign on top of the scenarios, we have provided a way for

organizing progressive and/or focused training packages. The tools provides for the

construction and support for measurable assessment of student performance of the given

scenarios to assess learning progress.

It has also served to enable the Scenario Definition File format to be more

comprehensively defined, thereby enabling the necessary control and interaction with the

CyberCIEGE game to support educational objectives.

As a more complete package, the CyberCIEGE effort is a step closer towards

serving as an educational tool to promote greater cyber-defense awareness and

understanding.

B. FURTHER WORK
As an initial effort in this area, there is certainly a lot more room for

improvement. The following are some suggested areas for further research.

1. Improved Details & Usability
The graphical interfaces of the tools could be further improved to provide more

information and improved usability. Presently, to demonstrate its viability, only critical

elements are presented in the user interfaces. There may be more information that the

Instructor would find useful when constructing the campaigns. For example, it would be

useful during campaign creation if the Instructor were able to call up the Scenario

Definition Tool to examine the details of a specific scenario, to obtain a better

understanding of the scenario and to make selection decisions. In the scenario selection

screen (Figure 19), it may be better to display the filter together with the list of scenarios.

2. Taxonomy of Terms
It may be worth examining how best to define a taxonomy of terms so that its

usefulness to the Instructor is maximized to support scenario selection.

44

Presently, the structure of the taxonomy of terms allows the Taxonomy Manager

to define the same term under more than one sub-tree. When the Instructor is

constructing a campaign, the filter will enable selection of scenarios which have that

taxonomy term defined, regardless of the sub-tree from which that term was actually

selected. An improvement to this would be to fully qualify the taxonomy term. For

example, “Cryptography” defined as “Confidentiality:Cryptography” would be

differentiated from “Authentication:Cryptography”.

3. Event Log Analysis
The present tool for event log analysis only displays the logged events in a tabular

format for the Instructor to review. More improvements could be made in this area to

provide a graphically-based time-line display of the events and other analysis tools.

The current implementation has only incorporated a subset of the events being

logged. The event log format is also likely to be expanded in the future, incorporating

more event types. Consequently, the implementation would also need to be enhanced to

provide commensurate support.

45

APPENDIX A. USE CASE SPECIFICATIONS

A. PURPOSE
This appendix documents the Analysis Use Case Specification, describing each

Use Case in detail.

B. USE CASES
1. [UC.1] Manage Taxonomy
Brief Description:

The Taxonomy Manager defines and manages a taxonomy of security

terms.

Primary Actor(s):
Taxonomy Manager.

Secondary Actor(s):
Nil.

Flow of Events
Basic Flow

1. The use case begins with the Taxonomy Manager loading the

taxonomy of security terms. The taxonomy is expressed as a hierarchy of security terms

(Figure 24). The Taxonomy Manager can then proceed to update the hierarchy by

performing any of steps 2 to 4 iteratively.

2. The Taxonomy Manager can add a new term to the hierarchy.

3. The Taxonomy Manager can select an existing term and delete it.

This will also delete any terms which are sub-nodes of the hierarchy.

4. The Taxonomy Manager can edit an existing term by renaming it.

5. At any point after completing any of steps 2 to 4, the Taxonomy

Manager can save the updated hierarchy.

6. Alternatively, the Taxonomy Manager could discard all the

changes made and revert to the last saved version.

46

7. When the Taxonomy Manager is done, he can close the taxonomy

editor and end the taxonomy editing. However, if there has been a change since the last

save, the Taxonomy Manager is prompted to save or discard the changes.

8. The use case then ends.

Taxonomy Editor

PKI

Authentication

Authentication

Taxonomy

Save CancelAdd Edit Delete

Figure 24. Taxonomy Editor.

Alternate Flows

Nil.

Special Requirements
Nil.

Pre-conditions
Nil.

Post-conditions
Nil.

2. [UC.2] Setup Campaign
Brief Description:

The Instructor sets up a campaign by describing the objectives of the

campaign and by composing a collection of related scenarios.

Primary Actor(s):

47

Instructor.

Secondary Actor(s):
Nil.

Flow of Events
Basic Flow

1. The use case begins with the Instructor calling up the Campaign

Manager and selecting a campaign to work on or create a new one if desired.

Campaign Manager

Network Security
Identification and Authentication

This campaign is made up 10
progressive modules on the topic
of Network Security.

Module 1 ...

New CloseEdit Delete

Campaigns Campaign Description

Save

Figure 25. Campaign Manager.

2. When creating a new campaign, the Instructor will assign a name

and a description to the campaign. The Instructor can also rename or modify the

description of an existing campaign.

3. With the campaign defined, the Instructor can proceed to select

scenarios to be added into it. He can do this by selecting a scenario from the available

list of scenarios.

4. Scenario selection can be accelerated by filtering the scenarios

based on taxonomy tags.

5. Once a scenario has been added to the campaign, the scenario

sequence can be rearranged.

6. The Instructor can then save or discard the campaign.

48

7. The Instructor can also delete a campaign.

Campaign

Campaign Name

Campaign Description

CancelSave

Scenario Sequence

DropAdd

Release

Figure 26. Campaign editor.

Alternate Flows

Nil.

Special Requirements
Nil.

Pre-conditions
Nil.

Post-conditions
Nil.

3. [UC.3] Release Campaign
Brief Description:

A campaign which is ready for release undergoes an integrity check to

finalize the campaign package. The campaign is then base-lined and ready for the

49

Student to play.

Primary Actor(s):
Instructor.

Secondary Actor(s):
Nil.

Flow of Events
Basic Flow

1. The use case begins with the Instructor selecting a campaign.

Campaign

Campaign Name

Campaign Description

CancelSave

Scenario Sequence

DropAdd

Release

Figure 27. Releasing a campaign.

2. The Instructor can then “release” it for Students to play it. This

will result in an integrity check to ensure that all the scenarios of the campaign are

consistent - i.e. the corresponding scenario definition files are physically present.

3. Once the checks are successful, the campaign can be accessed by

the Student for playing.

50

4. If there are any errors, the Instructor is informed of the sources of

errors. The Instructor updates the campaign definition as necessary to fix the problem.

For instance, the scenario file itself may be missing and hence need to be removed.

5. The use case ends when the Instructor completes the release of the

campaign, or abandons the attempt to release the campaign.

Alternate Flows

Nil.

Special Requirements
Nil.

Pre-conditions
Nil.

Post-conditions
Campaign is now released for Student to play.

4. [UC.4] Conduct After-Action Review
Brief Description:

The Instructor conducts an after-action review of the Students’

performance by analyzing the event logs.

Primary Actor(s):
Instructor.

Secondary Actor(s):
Student, CyberCIEGE, Scenario Definition Tool.

Flow of Events
Basic Flow

1. The use case begins when the Instructor selects a campaign to be

analyzed. This may be conducted together with the Student.

2. The campaign details are loaded, including the scenarios defined

for the campaign. The first scenario is selected by default.

3. When a scenario is selected, the display will show each Student’s

status.

51

Campaign Analyzer

Campaign

Select

Description

Scenario ListName

Scenario

Real-time StartedCurrent $StatusName

Close

View Log

Description

Name

Play

Details

Figure 28. Campaign Analyzer.

4. If the Instructor so chooses, he/she can select to view a Student’s

event logs to analyze further.

5. The event log is then loaded, and its details displayed (Figure 29).

This displays the events sorted by default in real date/time order.

6. As an event is selected, the corresponding details (i.e. event

property and value) for that event are displayed.

52

7. If the event is a saved game state, the Instructor can load the saved

state for further analysis. This will actually load CyberCIEGE with the associated saved

game file.

Event Log Analyzer
Events

EventGame Date/TimeReal Date/Time

Event ValueEvent Property

Filter

Close

ApplyClear

Real Date/Time From To

Game Date/Time From To

Event Types

>

<

>>

<<

Load Saved State

Figure 29. Event Log Analyzer.

8. The Instructor can apply filter conditions to filter the events being

displayed. Filter options include selection of a date/time window in terms of the real-

time and/or game-time, and by event types.

53

9. The Instructor can clear any existing filter options and redefine a

new one.

10. Once all the filter options have been set, the Instructor can apply

the filter. This will filter those events that meet the filter options to be displayed on the

events table.

11. The use case ends when the Instructor is done analyzing the

campaign and related scenarios.

Alternate Flows

Nil.

Special Requirements
Nil.

Pre-conditions
Nil.

Post-conditions
Nil.

5. [UC.5] Load Campaign
Brief Description:

The Student loads the campaign to review the objectives of the campaign,

and the scenarios to be played.

Primary Actor(s):
Student.

Secondary Actor(s):
Nil.

Flow of Events
Basic Flow

1. The use case begins with the Student calling up the Campaign

Player module (Figure 30). The Student’s identity is automatically determined from the

operating system.

2. The Student then selects a campaign definition file.

54

3. This loads the campaign and its details such as the campaign name

and campaign description. The sequence of scenario names involved is also displayed.

4. The Student can repeatedly review each scenario by selecting the

scenario.

5. As a scenario is selected, the scenario name and its description are

displayed.

Campaign Player

Campaign

Scenarios

Name

Description

Select

Description

Play

Close

Figure 30. Campaign Player.

55

6. The use case ends when the Student has finished reviewing the

campaign and the scenario descriptions.

Alternate Flows

Nil.

Special Requirements
Nil.

Pre-conditions
Nil.

Post-conditions
Nil.

6. [UC.6] Play Scenario
Brief Description:

The Student proceeds to play a scenario of the campaign.

Primary Actor(s):
Student.

Secondary Actor(s):
CyberCIEGE.

Flow of Events
Basic Flow

1. The use case begins with the Student having selected a scenario of

the campaign.

2. The Student can decide to play the currently selected scenario.

3 This will result in CyberCIEGE being launched to play that

scenario.

56

Campaign Player

Campaign

Scenarios

Name

Description

Select

Description

Play

Close

Figure 31. Playing a scenario.

Alternate Flows

Nil.

Special Requirements
Nil.

Pre-conditions
UC.5 must have been performed prior, to load a campaign to work on.

Post-conditions
Nil.

57

APPENDIX B. DETAILED DESIGN

A. PURPOSE
The purpose of this appendix is to document the detailed design of the application

modules. These are described using Design Use Cases, supported by collaboration

diagrams.

B. DYNAMIC VIEW - USE CASE DESIGN
For the description of the design use cases, the convention adopted is to use bold

font for classes/objects and the method calls. Methods are suffixed with parenthesis but

parameters are not presented. GUI interactions are typically not described in details,

except for key interactions that significantly affect the use case.

1. [UC.1] Manage Taxonomy
Brief Description:

The Taxonomy Manager (actor) defines and manages the taxonomy of

security terms.

Primary Actor(s):
Taxonomy Manager.

Secondary Actor(s):
Nil.

Flow of Events
Basic Flow

1. The use case begins with TaxonomyManager creating a new()

instance of TaxonomyCtl.

2. TaxonomyCtl in turn creates a new() instance of

TaxonomyBuilder. TaxonomyBuilder is responsible for loading the Taxonomy

hierarchy.

3. TaxonomyCtl then retrieves the root Taxonomy object by doing

getTaxonomyRoot() from TaxonomyBuilder.

58

1.new
5.showGUI

Taxonomy Manager::TaxonomyGUI

Taxonomy Manager::TaxonomyCtl

Taxonomy Manager::TaxonomyBuilder

Taxonomy Manager::TaxonomyManager

2.new

3.getTaxonomyRoot 4.new6.showForm

Figure 32. [UC1.0] Basic Flow: Manage Taxonomy.

4. TaxonomyCtl then creates a new() instance of the

TaxonomyGUI.

5. TaxonomyManager then calls TaxonomyCtl to showGUI().

6. And TaxonomyCtl in turn calls TaxonomyGUI to showForm().

7. From here, the Instructor can interact with the TaxonomyGUI to

[UC1.1] Add Taxonomy, [UC1.2] Edit Taxonomy, [UC1.3] Delete Taxonomy or

[UC1.4] Save Taxonomy. The use case ends when the Taxonomy Manager (actor)

performs [UC1.5] Cancel/Close Taxonomy Session.

[UC1.1] Scenario: Add Taxonomy

Taxonomy Manager::Taxonomy

Taxonomy Manager::TaxonomyCtl

Taxonomy Manager::TaxonomyGUI

1.onButtonAdd

2.onAddTop Package::Taxonomy Manager

3.new

Figure 33. [UC1.1] Scenario: Add Taxonomy.

1. In this scenario, the Taxonomy Manager selects the Add button

which triggers onButtonAdd() of TaxonomyGUI. TaxonomyGUI will ask the

Instructor to key in the taxonomy term.

59

2. Once the Taxonomy Manager is done with the entry,

TaxonomyGUI then calls onAdd() of TaxonomyCtl. If the Taxonomy Manager cancels

the addition request, the creation is abandoned and the scenario ends.

3. TaxonomyCtl will then create a new() Taxonomy object, and the

scenario ends.

[UC1.2] Scenario: Edit Taxonomy

Taxonomy

TaxonomyCtl

TaxonomyGUI

1.onButtonEdit

2.onEditTaxonomy Manager

3.rename

Figure 34. [UC1.2] Scenario: Edit Taxonomy.

1. In this scenario, the Taxonomy Manager selects the Edit button

which triggers onButtonEdit() of TaxonomyGUI. TaxonomyGUI will display the

current taxonomy value and ask the Taxonomy Manager to edit it.

2. Once the Taxonomy Manager is done, TaxonomyGUI then calls

onEdit() of TaxonomyCtl. If the Taxonomy Manager cancelled the edit, the editing is

abandoned and the scenario ends.

3. TaxonomyCtl will then rename() the Taxonomy object, and the

scenario ends.

 [UC1.3] Scenario: Delete Taxonomy

Taxonomy

TaxonomyCtl

TaxonomyGUI

1.onButtonDelete

2.onDelete

Taxonomy Manager

4.removeChild

Taxonomy Manager::Taxonomy

3.parent

Figure 35. [UC1.3] Scenario: Delete Taxonomy.

60

1. In this scenario, the Taxonomy Manager selects the Delete button

which triggers onButtonDelete() of TaxonomyGUI. TaxonomyGUI will ask the

Instructor to confirm the deletion request.

2. If the Taxonomy Manager confirms the deletion request,

TaxonomyGUI then calls onDelete() of TaxonomyCtl, else the deletion request is

abandoned and the scenario ends.

3. TaxonomyCtl will then call parent() of the Taxonomy object to

retrieve the parent Taxonomy object.

4. Using the parent Taxonomy object, TaxonomyCtl then calls it to

removeChild(), and the scenario ends.

 [UC1.4] Scenario: Save Taxonomy

Top Package::Taxonomy Manager
Taxonomy Manager::TaxonomyGUI

Taxonomy Manager::TaxonomyCtl

Taxonomy Manager::TaxonomyBuilder

1.onButtonSave 2.o
nS

av
e 3.save

Figure 36. [UC1.4] Scenario: Save Taxonomy.

1. In this scenario, the Taxonomy Manager selects the Save button

which triggers onButtonSave() of TaxonomyGUI.

2. TaxonomyGUI then calls onSave() of TaxonomyCtl.

3. TaxonomyCtl will then call the TaxonomyBuilder to save(), and

the scenario ends.

 [UC1.5] Scenario: Cancel/Close Taxonomy Session

Taxonomy Manager
TaxonomyGUI

TaxonomyCtl

TaxonomyBuilder

1.onButtonCancel
2.modified

3.onSave 4.save

Figure 37. [UC1.5] Scenario: Cancel Taxonomy Session.

61

1. In this scenario, the Taxonomy Manager selects the Cancel button

which triggers onButtonCancel() of TaxonomyGUI.

2. TaxonomyGUI will check with TaxonomyCtl if it has been

modified().

3. If it has been modified, the Taxonomy Manager will be asked if

the changes should be saved, ignored or to cancel this Cancel selection. If it is cancelled,

then the scenario ends. If it is to be saved, then TaxonomyCtl is called to do onSave().

4. In which case, TaxonomyCtl will in turn call TaxonomyBuilder

to save().

5. The application then shuts down, and the scenario ends.

Special Requirements
Nil.

Pre-conditions
Nil.

Post-conditions
Nil.

2. [UC.2] Setup Campaign
Brief Description:

The Instructor sets up a campaign by describing the objectives of the

campaign and by composing a collection of related scenarios.

Primary Actor(s):
Instructor.

Secondary Actor(s):
Nil.

Flow of Events
Basic Flow

1. The use case begins with the CampaignManager creating a new()

instance of CampaignManagerCtl.

2. CampaignManagerCtl in turn creates a new() instance of the

ScenarioCatalogBuilder.

62

3. And calls ScenarioCatalogBuilder to load() the catalog of

scenarios.

4. Finally, it calls getScenarios() from ScenarioCatalogBuilder.

5. CampaignManagerCtl next creates a new() instance of

CampaignCatalogBuilder.

Campaign Manager::CampaignManager

Campaign Manager::CampaignManagerCtl

Campaign Manager::CampaignManagerGUI

Campaign Manager::ScenarioCatalogBuilder

Campaign Manager::CampaignCatalogBuilder

1.new
10.showGUI

8.addCampaign

9.selectDefaults

11.showForm

2.new

3.load

4.getScenarios

5.new6.load
7.getCampaigns

Figure 38. [UC2.0] Basic Flow: Setup Campaign.

6. And calls CampaignCatalogBuilder to load() the catalog of

campaigns.

7. Finally, it calls getCampaigns() from CampaignCatalogBuilder.

8. Next, for each Campaign retrieved, CampaignManagerCtl

informs the CampaignManagerGUI to addCampaign() into the GUI.

9. Finally, it informs CampaignManagerGUI to selectDefaults().

10. CampaignManager then calls CampaignManagerCtl to

showGUI().

11. Which, in turn, performs a similar function with

CampaignManagerGUI by calling showForm().

12. The Instructor can then proceed to interact with the

CampaignManagerGUI using [UC2.1] New Campaign, [UC2.2] Edit Campaign, [UC2.3]

Delete Campaign or [UC2.4] Save Campaigns. The use case ends when the Instructor

performs [UC2.5] Cancel/Close Campaign Management Session.

63

[UC 2.1] Scenario: New Campaign

1. In this scenario, the Instructor selects the New button causing

onButtonNew() to be called on CampaignManagerGUI.

2. It, in turn, calls CampaignManagerCtl to showAddCampaign().

3. CampaignManagerCtl checks if the CampaignGUI is already

created and isVisible(). It is, then there is already an instance of it active and the scenario

ends.

4. If it is not, then it creates a new() instance of CampaignGUI.

5. It then updates the CampaignGUI with the list of scenarios by

invoking setScenarios().

Top Package::Instructor

Campaign Manager::CampaignManagerCtl

Campaign Manager::CampaignManagerGUI

Campaign Manager::CampaignGUI

Campaign Manager::Campaign

Campaign Manager::Campaigns

1.
on

Bu
tto

nN
ew

7.onButtonOK

2.showAddCam
paign

3.isVisible

4.new

5.setScenarios

6.newCampaignModal

8.onNew

9.n
ew

10
.se

tD
es

cri
pti

on

11
.se

tS
ce

na
rio

s
12.addElement

Figure 39. [UC2.1] Scenario: Add Campaign.

6. Finally, it calls newCampaignModal() of CampaignGUI to setup

the GUI as a modal dialog.

7. The Instructor interacts with the CampaignGUI to edit

accordingly. Once done, the Instructor selects the OK button, calling onButtonOK() on

CampaignGUI. If Cancel is selected, then the creation attempt is cancelled and this

scenario ends.

8. CampaignGUI next notifies CampaignManagerCtl via

onNew().

9. Consequently, CampaignManagerCtl then creates a new()

instance of a Campaign.

64

10. And updates it by doing setDescription().

11. And setScenarios().

12. This Campaign is then added into the list of campaigns by

invoking addElement().

13. Finally, CampaignManagerCtl updates the

CampaignManagerGUI by providing the newCampaign(). The scenario then ends.

[UC 2.2] Scenario: Edit Campaign

Instructor

CampaignManagerCtl

CampaignManagerGUI

CampaignGUI

Campaign

1.onButtonEdit

7.onButtonOK

2.showEditCampaign

3.isVisib
le

4.new

5.setScenarios

6.editCampaignModal

8.onEdit

9.rename
10.setDescription
11.setScenarios

Figure 40. [UC2.2] Scenario: Edit Campaign.

1. In this scenario, the Instructor selects the Edit button causing

onButtonEdit() of the CampaignManagerGUI to be called.

2. It then calls CampaignManagerGUI to showEditCampaign().

3. CampaignManagerGUI, in turn, checks if CampaignGUI

isVisiable().

4. If it is not, then a new() instance of CampaignGUI is created.

5. And it updates CampaignGUI by invoking setScenarios(),

supplying the list of all possible scenarios.

6. Finally, it calls editCampaignModal() to display the Campaign

as a modal dialog.

65

7. The Instructor amends the campaign definition accordingly. Once

completed, the Instruct selects OK, causing onButtonOK() to be called on

CampaignGUI. If Cancel is selected, the editing is abandoned and the scenario ends.

8. Else, Campaign will call CampaignManagerCtl to process the

editing done by calling onEdit().

9. CampaignManagerCtl performs the update by starting with a

rename() on the Campaign object to update its name.

10. Then it calls setDescription() to update the description.

11. And lastly, setScenarios() to update the list of scenarios for the

campaign.

12. With that done, it proceeds to notify the CampaignManagerGUI

with editCampaign() to update the campaigns listed, and the scenario ends.

[UC 2.3] Scenario: Delete Campaign

Top Package::Instructor

Campaign Manager::CampaignManagerGUI

Campaign Manager::CampaignManagerCtl

Campaign Manager::Campaigns

1.o
nB

utt
on

Dele
te

2.onDelete

3.r
em

ov
eE

lem
en

t

Figure 41. [UC2.3] Scenario: Delete Campaign.

1. In this scenario, the Instructor selects the Delete button, causing

onButtonDelete() to be called on CampaignManagerGUI.

2. It then passes this on to CampaignManagerCtl to handle

onDelete().

3. CampaignManagerCtl will removeElement() from the list of

campaigns. The scenario then ends.

[UC 2.4] Scenario: Save Campaigns

66

Instructor

CampaignManagerGUI

CampaignManagerCtl

1.onButtonSave
2.onSave 3.sa

ve

Campaign Manager::CampaignCatalogBuilder

Figure 42. [UC2.4] Scenario: Save Campaigns.

1. In this scenario, the Instructor selects the Save button to save all

the campaign changes, causing onButtonSave() to be called on

CampaignManagerGUI.

2. It, in turn, calls onSave() of CampaignManagerCtl to process it.

3. CampaignManagerCtl finally calls CampaignCatalogBuilder to

do the save() itself, and the scenario ends.

[UC 2.5] Scenario: Cancel/Close Campaign Management Session

Instructor

CampaignManagerGUI

CampaignManagerCtl

1.onButtonCancel 2.modified
3.onSave 4.save

CampaignCatalogBuilder

Figure 43. [UC2.5] Scenario: Cancel/Close Campaign Management Session.

1. In this scenario, the Instructor selects the Cancel button to

close/cancel the session. This causes onButtonCancel() to be called on the

CampaignManagerGUI.

2. CampaignManagerGUI checks with CampaignManagerCtl to

see if it has been modified().

3. If there are changes made which have not been saved, the

Instructor is asked to verify if the changes should be saved first, ignored, or to cancel the

cancel/close request altogether. If ignored, then the changes are simply abandoned, and

we proceed to step 4. If it is cancelled, the scenario ends and the session remain intact.

Else, CampaignManagerCtl is called to do onSave().

67

4. It then passes the saving to the CampaignCatalogBuilder to

perform the save().

5. The application is then shutdown, ending the scenario.

Special Requirements
Nil.

Pre-conditions
Nil.

Post-conditions
Nil.

3. [UC.3] Release Campaign
Brief Description:

A campaign which is ready for release undergoes an integrity check to

finalize the campaign package. The campaign is then base-lined and is ready for

Students to play it.

Primary Actor(s):
Instructor.

Secondary Actor(s):
Nil.

Flow of Events
[UC3.1] Scenario: Release on New Campaign

Top Package::Instructor

Campaign Manager::CampaignGUI

Campaign Manager::CampaignManagerGUI

Campaign Manager::CampaignManagerCtl

Campaign Manager::Campaign

Campaign Manager::CampaignRelease

Campaign Manager::CampaignBuilder

Campaign Manager::Campaigns

1.
on

Bu
tto

nR
el

ea
se

2.scenarioIntegrity

3.onN
ew

AndR
elease

12
.n

ew
Ca

m
pa

ig
n

4.new

5.se
tDescr

iptio
n

6.se
tSce

nario
s

7.new

8.addScenarios

9.new10.save

11.addElement

Figure 44. [UC3.1] Scenario: Release on New Campaign.

68

1. The use case begins with the CampaignGUI in the “new

campaign” mode [UC2.1] with the Instructor selecting the Release button to release the

campaign. This causes onButtonRelease() to be called against CampaignGUI.

2. CampaignGUI then performs an integrity check to ensure that all

the scenarios of the campaign are consistent by calling CampaignManagerCtl to check

scenarioIntegrity() iteratively for each scenario defined in the campaign.

3. If all scenario files are intact, it then calls CampaignManagerCtl

to perform onNewAndRelease().

4. CampaignManagerCtl then creates a new() instance of

Campaign.

5. And updates Campaign by invoking setDescription().

6. As well as setScenarios().

7. It then creates a copy for release by creating a new() instance of

CampaignRelease.

8. And addScenarios() to it.

9. It then creates a new() instance of CampaignBuilder.

10. And asks CampaignBuilder to save() the releasable campaign

copy. This will include export of all the required files, including the campaign definition

files and the (copies of) scenario files.

11. The campaign that was created is then added to Campaigns by

doing an addElement().

12. Finally, it updates CampaignManagerGUI with

newCampaign(). The scenario then ends.

[UC3.2] Scenario: Release on Edit Campaign

1. The use case begins with the CampaignGUI in the “edit campaign”

mode [UC2.1] with the Instructor selecting the Release button to release the campaign.

This causes onButtonRelease() to be called against CampaignGUI.

69

2. CampaignGUI then performs an integrity check to ensure that all

the scenarios of the campaign are consistent by calling CampaignManagerCtl to check

scenarioIntegrity() iteratively for each scenario defined in the campaign.

3. If all scenario files are intact, it then calls CampaignManagerCtl

to do onEditAndRelease().

4. CampaignManagerCtl then renames() the Campaign.

5. And updates Campaign by invoking setDescription().

6. Followed by setScenarios().

7. It then creates a copy for release by creating a new() instance of

CampaignRelease.

Instructor

CampaignGUI

CampaignManagerGUI

CampaignManagerCtl

Campaign

CampaignRelease

CampaignBuilder

1.o
nB

utto
nRelea

se
2.scenarioIntegrity

3.onEditAndRelease

11.editCampaign

4.rename

5.setDescription

6.setScenarios

7.new
8.addScenarios

9.new10.save

Figure 45. [UC3.2] Scenario: Release on Edit Campaign.

8. And addScenarios() to it.

9. It then creates a new() instance of CampaignBuilder.

10. And asks CampaignBuilder to save() the releasable campaign

copy. It will include exporting all the required files, including the campaign definition

files and the (copies of) scenario files.

11. Finally, it updates CampaignManagerGUI with editCampaign().

The scenario then ends.

Special Requirements
Nil.

70

Pre-conditions
[UC.2] Setup Campaign has to be performed before this, and more

specifically, either [UC2.1] or [UC2.2] is in progress.

Post-conditions
Campaign is now released for Student to play.

4. [UC.4] Conduct After-Action Review
Brief Description:

The Instructor conducts an after-action review with the Student by

analyzing the event logs.

Primary Actor(s):
Instructor.

Secondary Actor(s):
CyberCIEGE, Scenario Definition Tool.

Flow of Events
Basic Flow

1. The use case begins with CampaignAnalyzer creating a new()

instance of CampaignAnalyzerCtl.

2. CampaignAnalyzerCtl in turn creates a new() instance of

CampaignAnalyzerGUI.

Campaign Analyzer::CampaignAnalyzer

Campaign Analyzer::CampaignAnalyzerCtl

Campaign Analyzer::CampaignAnalyzerGUI

1.new3.showGUI

2.new

4.showForm

Figure 46. [UC4.0] Basic Flow: Conduct After-Action Review.

3. CampaignAnalyzer will then call CampaignAnalyzerCtl to

showGUI().

71

4. Finally, CampaignAnalyzerCtl will call CampaignAnalyzerGUI

to showForm().

5. From here, the Instructor can interact with the

CampaignAnalyzerGUI to [UC4.1] Select Campaign, [UC4.2] Examine Details of a

Scenario, [UC4.3] Play Scenario or [UC4.7] Close the Campaign Analyzer.

[UC4.1] Scenario: Select Campaign

Top Package::Instructor

Campaign Analyzer::CampaignAnalyzerCtl

Campaign Analyzer::CampaignAnalyzerGUI

Campaign Analyzer::CampaignPlayBuilder

1.onButtonSelect 2.loadCampaign
7.setCampaign

3.new

4.load

5.getCampaign

6.getPlayers

Figure 47. [UC4.1] Scenario: Select Campaign.

1. In this scenario, the Instructor selects the “Select” button to pick a

campaign. This causes onButtonSelect() to be called on CampaignAnalyzerGUI.

2. CampaignAnalyzerGUI will then call CampaignAnalyzerCtl to

loadCampaign().

3. CampaignAnalyzerCtl will create() a new instance of

CampaignPlayBuilder to collect information about the campaign selected.

4. It does this by asking CampaignPlayBuilder to load().

5. And proceeds to invoke getCampaign() to obtain the campaign

details.

6. And also getPlayers() to obtain all the players involved.

7. It then updates the CampaignAnalyzerGUI by calling

asetCampaign(). The scenario then ends.

[UC4.2] Scenario: Examine Details of a Scenario

1. The scenario begins with the Instructor selecting the “Details”

button, causing onButtonDetails() to be called on CampaignAnalyzerGUI.

72

2. CampaignAnalyzerGUI then calls CampaignAnalyzerCtl to

loadScenario().

3. CampaignAnalyzerCtl in turn calls CampaignPlay to

getScenarioEditorCommand().

4. Finally, it will execute() the command to launch the Scenario

Editor Tool with the scenario definition file loaded. The Instructor then proceeds to

interact with the Scenario Editor Tool, ending this scenario.

Top Package::Instructor

Campaign Analyzer::CampaignAnalyzerGUI

Campaign Analyzer::CampaignAnalyzerCtl

Campaign Analyzer::CampaignPlay1.onButtonDetails

2.loadScenario

4.exec

3.getSce
nario

Edito
rC

ommand

Top Package::Scenario Definition Tool
Figure 48. [UC4.2] Scenario: Examine Details of a Scenario.

[UC4.3] Scenario: Play Scenario

Instructor

CampaignAnalyzerGUI

CampaignAnalyzerCtl

CampaignPlay

1.onButtonPlay

2.playScenario

4.exec

3.s
etP

lay
NoL

og
Com

man
d

Top Package::CyberCIEGE
Figure 49. [UC4.3] Scenario: Play Scenario.

1. In this scenario, the Instructor selects the “Play” button, causing

onButtonPlay() to be called on the CampaignAnalyzerGUI.

73

2. CampaignAnalyzerGUI then calls CampaignAnalyzerCtl to

playScenario().

3. CampaignAnalyzerCtl in turn calls CampaignPlay to

getPlayNoLogCommand().

4. Finally, it will execute() the command to launch CyberCIEGE

with the given scenario loaded. No event logging is specified in this case. The Instructor

then interacts with CyberCIEGE to review the scenario selected, ending this scenario.

 [UC4.4] Scenario: View Log

Top Package::Instructor

Campaign Analyzer::CampaignAnalyzerGUI

Campaign Analyzer::CampaignAnalyzerCtl

Campaign Analyzer::CampaignPlayers

Campaign Analyzer::EventLogGUI Campaign Analyzer::PlayerStatus

1.onButto
nViewLog

2.viewEventLog

3.g
etN

am
e

4.new5.n
ew

6.s
ho

wDial
og

Figure 50. [UC4.4] Scenario: View Log.

1. The scenario begins with the Instructor selecting the “View”

button causing onButtonViewLog() to be called on CampaignAnalyzerGUI.

2. CampaignAnalyzerGUI in turn calls CampaignAnalyzerCtl to

viewEventLog().

3. For each CampaignPlayer, the CampaignAnalyzerCtl will call

getName() to compare against the player selected.

4. Once a match is found, it will create a new() instance of

PlayerStatus to obtain all the summary status values of that player.

5. It then creates a new() instance of EventLogGUI.

74

6. And calls EventLogGUI to showDialog(), displaying the event

log of that player.

7. The Instructor can continue to interact with the EventLogGUI to

[UC4.5] Load Saved State and finally to using [UC4.6] Close the Event Log Analyzer to

end the session. The scenario then ends.

[UC4.5] Scenario: Load Saved State

Top Package::Instructor

Campaign Analyzer::EventLogGUI

Campaign Analyzer::CampaignAnalyzerCtl

Top Package::CyberCIEGE

Campaign Analyzer::CampaignPlayer

1.
on

But
to

nL
oa

d

2.loadSavedState

3.
ge

tP
la

yL
oa

dS
av

eG
am

e

4.exec

Figure 51. [UC4.5] Scenario: Load Saved State.

1. In this scenario, the Instructor selects the “Load” button causing

onButtonLoad() to be called on the EventLogGUI.

2. EventLogGUI in turn calls CampaignAnalyzerCtl to

loadSavedState().

3. CampaignAnalyzerCtl then calls CampaignPlayer to

getPlayLoadSaveGame(), obtaining the command to be executed to load the saved state.

4. Finally, it will execute() the command, causing CyberCIEGE to be

launched with the saved game file loaded. The Instructor continues to interact with

CyberCIEGE to review the state of the player’s game. This scenario then ends.

 [UC4.6] Scenario: Close the Event Log Analyzer

1. In this scenario, the Instructor selects the “Close” button causing

onButtonClose() to be called on the EventLogGUI.

75

2. EventLogGUI will then close() and dispose() itself, ending this

scenario.

Top Package::Instructor

Campaign Analyzer::EventLogGUI
1.onButtonClose

Figure 52. [UC4.6] Scenario: Close the Event Log Analyzer.

[UC4.7] Scenario: Close the Campaign Analyzer

1. In this scenario, the Instructor selects the “Close” button causing

onButtonClose() to be called on the CampaignAnalyzerGUI.

2. CampaignAnalyzerGUI will then shutdown the Campaign

Analyzer.

Top Package::Instructor

Campaign Analyzer::CampaignAnalyzerGUI
1.onButtonClose

Figure 53. [UC4.7] Scenario: Close the Campaign Analyzer.

Special Requirements
Nil.

Pre-conditions
Nil.

Post-conditions
Nil.

5. [UC.5] Load Campaign
Brief Description:

The Student loads the campaign to review the objectives of the campaign,

and the scenarios to be played.

Primary Actor(s):
Student.

Secondary Actor(s):
Nil.

76

Flow of Events
Basic Flow

1. The use case begins with CampaignPlayerTool creating a new()

instance of CampaignPlayerTool.

2. CampaignPlayerCtl is then responsible for creating a new()

instance of CampaignPlayerGUI.

3. CampaignPlayerTool will then ask CampaignPlayerCtl to

showGUI().

4. CampaignPlayerCtl in turn calls CampaignPlayerGUI to

showForm().

Campaign Player::CampaignPlayerTool

Campaign Player::CampaignPlayerCtl

Campaign Player::CampaignPlayerGUI

1.new3.showGUI

2.new

4.showForm

Figure 54. [UC5.0] Basic Flow: Load Campaign.

5. The Student can then proceed to perform [UC5.1] Select

Campaign.

6. The use case ends when the Student performs [UC5.2] Close

Campaign Tool.

[UC 5.1] Scenario: Select Campaign

1. The scenario begins when the Student clicks the Select button,

causing onButtonSelect() to be called on CampaignPlayerGUI. This enables the

Student to select a “campaign.xml” file, which is a campaign definition file, to load.

2. Once selected, it in turns calls CampaignPlayerCtl to

loadCampaign().

77

3. CampaignPlayerCtl then creates a new() instance of

CampaignPlayerBuilder.

4. And uses it to load() the campaign itself.

5. CampaignPlayerCtl then retrieves the resulting Campaign object

by doing a getCampaign() from CampaignPlayerBuilder.

6. Finally, CampaignPlayerCtl will setCampaign() to the

CampaignPlayerGUI, updating the display with the campaign details, thus ending the

scenario.

Top Package::Student

Campaign Player::CampaignPlayerGUI

Campaign Player::CampaignPlayerCtl

Campaign Player::CampaignPlayBuilder

1.o
nB

utt
on

Sele
ct 2.loadCam

paign

6.setCam
paign

3.
ne

w
4.

loa
d

5.
ge

tC
am

pa
ign

Figure 55. [UC5.1] Scenario: Select Campaign.

[UC 5.2] Scenario: Close Campaign Tool

1. The scenario begins with the Student selecting the Close button.

This causes onButtonClose() to be called on CampaignPlayerGUI.

2. CampaignPlayerGUI will then shutdown the tool, thus ending the

scenario.

Top Package::Student

Campaign Player::CampaignPlayerGUI

1.onButtonClose

Figure 56. [UC5.2] Scenario: Close Campaign Tool.

Special Requirements
Nil.

Pre-conditions
Nil.

Post-conditions
Nil.

78

6. [UC.6] Play Scenario
Brief Description:

The Student proceeds to play a scenario of the campaign.

Primary Actor(s):
Student.

Secondary Actor(s):
CyberCIEGE.

Flow of Events
Basic Flow

1. The use case begins with the Student having selected a scenario of

the campaign in [UC5.1]. The Student then selects the Play button, causing

onButtonPlay() to be called on CampaignPlayerGUI.

2. It in turn calls the CampaignPlayerCtl to playScenario().

3. And CampaignPlayerCtl then calls Campaign to

getPlayCommand(), obtaining an executable shell command to launch CyberCIEGE.

Finally it executes the command and the Student can proceed to play in CyberCIEGE,

thus ending the use case.

Top Package::Student

Campaign Player::CampaignPlayerGUI

Campaign Player::CampaignPlayerCtl

Campaign Manager::Campaign

1.
on

Bu
tto

nP
lay

2.playScenario

3.
ge

tP
la

yC
om

m
an

d

Figure 57. [UC6.0] Basic Flow: Play Campaign.

Special Requirements
Nil.

Pre-conditions
[UC5.1] must be performed prior to this use case so that the campaign to

be played is already loaded.

79

Post-conditions
Nil.

80

THIS PAGE INTENTIONALLY LEFT BLANK

81

APPENDIX C. INTERFACE SPECIFICATIONS WITH
RIVERMIND

A. PURPOSE
The purpose of this appendix is to define the interface specifications with

Rivermind.

B. SCENARIO FILE FORMAT
The following changes/additions proposed for the Scenario File were agreed

upon:

1. Title/name (descriptive but short) to the scenario.

2. Game termination condition settings. Each of these could be optionally

specified. Only when specified will they affect game termination. For instance, if none

are specified, the game plays indefinitely.

a. Upper/lower-bound thresholds for various game play attributes that

will cause the game to end when the threshold is exceeded.

b. Game turn limit - game ends when the time unit of game play

exceeds the limit.

C. CYBERCIEGE PROGRAM PARAMETERS
To enable the Campaign Player module to launch CyberCIEGE with the desired

scenario and generate an EventLog, CyberCIEGE shall support the following program

parameters:

CyberCIEGE -s <Scenario File> [-i <IDTag>-e <EventLog>]

To enable a saved game file to be reloaded, the following is required:

CyberCIEGE -l <Saved Game>

Program

Parameter
Description Format

-s <Scenario File> Filename of the scenario to be played. Standard filename format.

-i <IDTag> Identifies the campaign-scenario-player for
this game. The tag <IDTag> (in the form
<campaign name>/<scenario
name>/<userID>) is intended to be written

String of at most 100
characters.

82

out to the event log file as a header
information.

-e <EventLog> Name of the event log. CyberCIEGE shall
append “-999.log” to this name to fully
qualify the filename. “999” shall be a
running number starting from “001”,
increasing by 1 till a maximum of “999”,
when the log is split into multiple log files.
Rather than having a single huge event log
file, it is thus possible to have a number of
smaller event log files instead.

String of at most 100
characters.

e.g. “example” becomes
“example-001.log”, “example-
002.log”, …

-l <Saved Game> Load the CyberCIEGE saved game file
supplied.

Standard filename format.

Table 5 CyberCIEGE program parameters.

D. EVENT LOG
It should be noted that the format is case-sensitive.

The DTD is defined as follows:

<!--
 Name: EventLog.dtd
 Version: 1.0
-->

<!ELEMENT simsecurityeventlog (version, header,
 (controlevent | gameevent | summaryevent | userevent |
 componentevent | zoneevent | alertevent)*)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT header (idtag?, scenario)>
<!ELEMENT idtag (#PCDATA)>
<!ELEMENT scenario (#PCDATA)>

<!ELEMENT controlevent (dtimereal, dtimegame,
 (debuglog | logtrigger | popuptrigger | tickertrigger | savetrigger))>
<!ELEMENT debuglog (tagdata?, message)>
<!ELEMENT logtrigger (tagdata?, message)>
<!ELEMENT popuptrigger (tagdata?, message)>
<!ELEMENT tickertrigger (tagdata?, message)>
<!ELEMENT savetrigger (tagdata?, filename)>
<!ELEMENT dtimereal (#PCDATA)>
<!ELEMENT dtimegame (#PCDATA)>
<!ELEMENT tagdata (#PCDATA)>
<!ELEMENT message (#PCDATA)>
<!ELEMENT filename (#PCDATA)>

<!ELEMENT gameevent (dtimereal, dtimegame,
 (start | end | pause | resume | save | exit | quit))>

83

<!ELEMENT start EMPTY>
<!ELEMENT end (#PCDATA)>
<!ELEMENT pause EMPTY>
<!ELEMENT resume EMPTY>
<!ELEMENT save (filename)>
<!ELEMENT exit EMPTY>
<!ELEMENT quit EMPTY>

<!ELEMENT summaryevent (dtimereal, dtimegame, (daily | monthly))>
<!ELEMENT daily (budget, sales, salaries, hardwareexp, softwareexp, misc,
cash)>
<!ELEMENT monthly (budget, sales, salaries, hardwareexp, softwareexp, misc,
cash)>
<!ELEMENT budget (#PCDATA)>
<!ELEMENT sales (#PCDATA)>
<!ELEMENT salaries (#PCDATA)>
<!ELEMENT hardwareexp (#PCDATA)>
<!ELEMENT softwareexp (#PCDATA)>
<!ELEMENT misc (#PCDATA)>
<!ELEMENT cash (#PCDATA)>

<!ELEMENT userevent (dtimereal, dtimegame, (hire | fire))>
<!ELEMENT hire (name, salary)>
<!ELEMENT fire (name, salary)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT salary (#PCDATA)>

<!ELEMENT componentevent (dtimereal, dtimegame, (buy | sell | configure))>
<!ELEMENT buy (catalogname, componentname, cost)>
<!ELEMENT sell (catalogname, componentname, cost)>
<!ELEMENT configure (componentname, config?, procsec?)>
<!ELEMENT config ((software | network | configbool | configval)*)>
<!ELEMENT software (softwarename, boolean)>
<!ELEMENT network (networkname, boolean)>
<!ELEMENT configbool (field, boolean)>
<!ELEMENT configval (field, value)>
<!ELEMENT procsec (
 (procsecbool | procsecval | secrecyrange | integrityrange | access)*)>
<!ELEMENT procsecbool (field, boolean)>
<!ELEMENT procsecval (field, value)>
<!ELEMENT secrecyrange (min?, max?)>
<!ELEMENT integrityrange (min?, max?)>
<!ELEMENT access (user, accessmode)>
<!ELEMENT catalogname (#PCDATA)>
<!ELEMENT componentname (#PCDATA)>
<!ELEMENT cost (#PCDATA)>
<!ELEMENT softwarename (#PCDATA)>
<!ELEMENT networkname (#PCDATA)>
<!ELEMENT field (#PCDATA)>
<!ELEMENT boolean (#PCDATA)>
<!ELEMENT value (#PCDATA)>

84

<!ELEMENT min (#PCDATA)>
<!ELEMENT max (#PCDATA)>
<!ELEMENT accesslist (#PCDATA)>
<!ELEMENT accessmode (#PCDATA)>

<!ELEMENT zoneevent (dtimereal, dtimegame,
 zonename, secrecy?, integrity?, physicalsecurity?)>
<!ELEMENT physicalsecurity ((physecbool | permitteduser)*)>
<!ELEMENT physecbool (field, boolean)>
<!ELEMENT permitteduser (user, boolean)>
<!ELEMENT zonename (#PCDATA)>
<!ELEMENT secrecy (#PCDATA)>
<!ELEMENT integrity (#PCDATA)>
<!ELEMENT user (#PCDATA)>

<!ELEMENT alertevent (dtimereal, dtimegame, (indicator | attack))>
<!ELEMENT indicator (securitytarget, targetname, message)>
<!ELEMENT attack (securitytarget, targetname, attacktype, result)>
<!ELEMENT securitytarget (#PCDATA)>
<!ELEMENT targetname (#PCDATA)>
<!ELEMENT attacktype (#PCDATA)>
<!ELEMENT result (#PCDATA)>

Figure 58. Event Log Document Type Definition.

The following table details the elements and attributes defined in the XML/DTD

file.

Element/
Attribute

Description Reqd
*

Format

version Version of the event log format.

R 9[99].9[99]
e.g. “1.0”

header Header block.

R

idtag The idtag associates the log file with the
campaign-scenario-player involved. If the
idtag is absent, it implies that the scenario
was played independently.

O String of at most 128 characters:

<campaign name>/<scenario
name>/<userID

scenario Name of the scenario

R String of at most 128 characters

control
event

Control event block. O

dtimereal Date/time of real world.

R YYYYMMDDhhmmss

YYYY = Year
MM = Month (“01” to “12”
DD = Day (“01” to “31”)
hh = Hour (“00 to 23”)

85

mm = Minutes (“00” to “59”)
ss = Seconds (“00” to “59”)

dtimegame Date/time of game simulation.

R YYYYMMDDhhmmss

YYYY = Year
MM = Month (“01” to “12”
DD = Day (“01” to “31”)
hh = Hour (“00 to 23”)
mm = Minutes (“00” to “59”)
ss = Seconds (“00” to “59”)

debuglog [controlevent : debuglog]

For general-purpose debug logging, typically
generated by CyberCIEGE and is of no
interest for Campaign Analysis purposes.

C

tagdata Can be optionally defined by the scenario
designer to provide data to associate this
particular log.

O String of at most 256 characters.

message The debug message itself.

R String of at most 1024 characters.

logtrigger [controlevent : logtrigger]

logtrigger is a control event for scenario-
defined logging. It is generated when the
trigger condition is met.

C

tagdata Can be optionally defined by the scenario
designer to provide data to associate this
particular log.

O String of at most 256 characters.

message The log message itself.

R String of at most 1024 characters.

popup
trigger

[controlevent : popuptrigger]

popuptrigger is a control event for scenario-
defined popups. It is generated when the
trigger condition is met. In CyberCIEGE,
this corresponds to a pop-up dialog
appearing on the screen.

C

tagdata Can be optionally defined by the scenario
designer to provide data to associate this
particular log.

O String of at most 256 characters.

message The popup message.

R String of at most 1024 characters.

86

tickertrigger [controlevent : tickertrigger]

tickertrigger is a control event for scenario-
defined ticker messages. It is generated
when the trigger condition is met. In
CyberCIEGE, this corresponds to a ticker
message scrolling across the screen.

C

tagdata Can be optionally defined by the scenario
designer to provide data to associate this
particular log.

O String of at most 256 characters.

message The ticker message.

R String of at most 1024 characters.

savetrigger [controlevent : savetrigger]

savetrigger is a control event for scenario-
defined snapshots. It is generated when the
trigger condition is met. In CyberCIEGE,
this corresponds to a game being saved
without student involvement. Effectively,
we get a snapshot of the state of the game.

The initial version of CyberCIEGE will not
support this feature. Instead, CyberCIEGE
will cue the student to do a manual save
instead.

C

tagdata Can be optionally defined by the scenario
designer to provide data to associate this
particular log.

O String of at most 256 characters.

filename The filename of the saved game. The
filename provided must be relative to the
event log directory only. Hence, the
directory path up to the event log directory
shall not be included.

R Filename.

gameevent Game event block.

O

dtimereal Date/time of real world.

R YYYYMMDDhhmmss

YYYY = Year
MM = Month (“01” to “12”
DD = Day (“01” to “31”)
hh = Hour (“00 to 23”)
mm = Minutes (“00” to “59”)
ss = Seconds (“00” to “59”)

dtimegame Date/time of game simulation. R YYYYMMDDhhmmss

87

YYYY = Year
MM = Month (“01” to “12”
DD = Day (“01” to “31”)
hh = Hour (“00 to 23”)
mm = Minutes (“00” to “59”)
ss = Seconds (“00” to “59”)

start Indicates the start of the game - i.e. when the
student is able to start performing actions.
This occurs after the scenario has been
loaded.

C Empty - i.e. contains no value.

end Indicates the result at the end of the game,
where a game termination condition is
reached. This is applicable only when the
scenario has a termination condition.

C “win” | “lose”

pause Game was paused.

C Empty - i.e. contains no value.

resume Game resumed following a pause, upon
completion of saving or upon completion of
a reload of a previously saved game.

C Empty - i.e. contains no value.

exit Game was exited. May be “resume”d
subsequently by reloading.

C Empty - i.e. contains no value.

quit Game was terminated before reaching
termination condition.

C Empty - i.e. contains no value.

save [gameevent : save]

Game was saved

O

filename Filename of the saved game. This shall be a
fully-qualified filename.

C Filename.

summary
event

Summary event block. O

dtimereal Date/time of real world.

R YYYYMMDDhhmmss

YYYY = Year
MM = Month (“01” to “12”
DD = Day (“01” to “31”)
hh = Hour (“00 to 23”)
mm = Minutes (“00” to “59”)
ss = Seconds (“00” to “59”)

dtimegame Date/time of game simulation.

R YYYYMMDDhhmmss

88

YYYY = Year
MM = Month (“01” to “12”
DD = Day (“01” to “31”)
hh = Hour (“00 to 23”)
mm = Minutes (“00” to “59”)
ss = Seconds (“00” to “59”)

daily [summaryevent : daily]

Daily summary. Generated at the end of
each game day (at 2359H).

C

budget Daily funds budgeted in $.

R Dollar amount.

sales Daily sales in $.

R Dollar amount.

salaries Daily salaries paid in $.

R Dollar amount.

hardware
exp

Hardware bought today in $.

R Dollar amount.

software
exp

Software bought today in $.

R Dollar amount.

misc Misc daily fixed costs in $.

R Dollar amount.

cash Current cash balance in $. Cash balance
should be = (budget + sales) - (salaries +
hardwareexp + softwareexp + misc)

R Dollar amount.

monthly [summaryevent : monthly]

Monthly summary. Generated at the end of
each game month (at 2359H of the last day
of the month).

An initial monthly summary is to be
generated immediately before the “game”-
“start” event is logged. This is to indicate
the start state.

C

budget Monthly budget in $.

R Dollar amount.

sales Monthly sales in $.

R Dollar amount.

salaries Monthly salaries paid in $.

R Dollar amount.

hardware
exp

Hardware bought this month in $.

R Dollar amount.

software
exp

Software bought this month in $.

R Dollar amount.

misc Misc fixed costs for this month $. R Dollar amount.

89

cash Current cash balance in $. Cash balance

should be = (budget + sales) - (salaries +
hardwareexp + softwareexp + misc)

R Dollar amount.

userevent User event block.

O

dtimereal Date/time of real world.

R YYYYMMDDhhmmss

YYYY = Year
MM = Month (“01” to “12”
DD = Day (“01” to “31”)
hh = Hour (“00 to 23”)
mm = Minutes (“00” to “59”)
ss = Seconds (“00” to “59”)

dtimegame Date/time of game simulation.

R YYYYMMDDhhmmss

YYYY = Year
MM = Month (“01” to “12”
DD = Day (“01” to “31”)
hh = Hour (“00 to 23”)
mm = Minutes (“00” to “59”)
ss = Seconds (“00” to “59”)

hire [userevent : hire]

User hired.

C

name Name of user.

R String of at most 64 characters.

salary Salary of user in $. R Dollar amount.

fire [userevent : fire]

User fired.

C

name Name of user. R String of at most 64 characters.
salary Salary of user in $. R Dollar amount.

component
event

Component event block. O

dtimereal Date/time of real world.

R YYYYMMDDhhmmss

YYYY = Year
MM = Month (“01” to “12”
DD = Day (“01” to “31”)
hh = Hour (“00 to 23”)
mm = Minutes (“00” to “59”)
ss = Seconds (“00” to “59”)

90

dtimegame Date/time of game simulation.

R YYYYMMDDhhmmss

YYYY = Year
MM = Month (“01” to “12”
DD = Day (“01” to “31”)
hh = Hour (“00 to 23”)
mm = Minutes (“00” to “59”)
ss = Seconds (“00” to “59”)

buy [componentevent : buy]

Component bought.

C

catalog
name

Catalog name that this component is an
instance of.

R String of at most 64 characters

component
name

Name of component bought.

R String of at most 64 characters.

cost Cost of the component in $.

R Dollar amount.

sell [componentevent: sell]

Component sold.

C

catalog
name

Catalog name that this component is an
instance of.

R String of at most 64 characters

component
name

Name of component sold.

R String of at most 64 characters.

cost Cost of the component in $.

R Dollar amount.

configure [componentevent : configure]

Component being configured.

C

component
name

Name of the component being configured. R String of at most 64 characters.

config [componentevent : configure : config]

Configuration setup group.

O

software [componentevent : configure : config :
software]

Software configuration.

C

software
name

Name of the software. R String of at most 64 characters.

boolean Indicates whether the software is being R “true” | “false”

91

installed (“true”) or uninstalled (“false”).

network [componentevent : configure : config :
network]

C

network
name

Name of the network. String of at most 64 characters.

boolean Indicates whether the component is being
attached (“true”) or detached (“false”) from
the network.

 “true” | “false”

configbool [componentevent : configure : config :
configbool]

Configuration setting which is a boolean
type.

C

field Name of the configuration setting.

e.g.:
“RemoteAuthentication”|
“AcceptPKICerts”|
“UseOneTimePasswordToken”|
“UseBiometrics”|
“UseTokenPKICerts”|
“UseClientPKICerts”|
“VPNClient”|
“ScanEmailAttachments”|
“StripEmailAttachments”|
“AutomaticLockLogout”|
“SelfAdminister”|
“SelfAdministerMAC”|
“AdministerSoftwareControl”|
“BlockRemovableMedia”|
“BlockLocalStorage”|
“BrowserSettingLoose”|
“BrowserSettingNormal”|
“BrowserSettingStrict”|
“EmailSettingsLoose”|
“EmailSettingsNormal”|
“EmailSettingsStrict”|
“UpdatePatchesAsReleased”|
“UpdatePatchesRoutinely”|
“UpdatePatchesAutomatically”|
“UpdateAntivirusRegular”|
“UpdateAntivirusAutomatic”|
“UninterruptiblePower”|
“AdminBackup”|
“OffsiteBackup”

R String of at most 64 characters.

92

boolean Indicates whether the configuration setting is
being applied (“true”) or removed (“false”).

R “true” | “false”

configval [componentevent : configure : config :
configval]

Configuration setting which is a value-based
type.

C

field Name of the configuration setting.

e.g.
“PasswordLength” |
“ChangeFrequency” |
“PasswordComplexity” |
…

R String of at most 64 characters.

value Value of the configuration setting. Note that
there are valid values associated with each
specific field.

R String of at most 64 characters.

procsec [componentevent : configure : procsec]

Procedural security.

O

procsecbool [componentevent : configure : procsec :
procsecbool]

Procedural security setting which is a
boolean type.

C

field Name of the procedural security.

e.g.:
“HoldsUserAsset” |
“ProtectWithACL” |
“WriteDownPasswords” |
“LockerLogoff” |
“NoEmailAttachmentExecute” |
“NoExternalSoftware” |
“NoUseOfModems” |
“NoWebMail” |
“NoMediaLeaveZone” |
“UpdateAntiVirus” |
“ApplyPatches” |
“LeaveMachinesOn” |
“NoPhysicalModifications” |
“UserBackup”

R String of at most 64 characters.

boolean Indicates whether the procedural security is
being applied (“true”) or removed (“false”).

R “true” | “false”

93

procsecval [componentevent : configure : procsec :

procsecval]

Procedural security setting which is a value-
based type.

C

field Name of the procedural security.

e.g.
“PasswordLength” |
“PasswordCharacterSet” |
“PasswordChangeFrequency” |
…

R String of at most 64 characters.

value Value of the procedural security. Note that
there are valid values associated with each
specific field.

R String of at most 64 characters.

secrecy
range

[componentevent : configure : procsec :
secrecyrange]

Secrecy range.

C

min Minimum secrecy level.

R String of at most 64 characters.

max Maximum secrecy level.

R String of at most 64 characters.

integrity
range

[componentevent : configure : procsec :
integrityrange]

Integrity range.

C

min Minimum integrity level.

R String of at most 64 characters.

max Maximum integrity level.

R String of at most 64 characters.

access [componentevent : configure : procsec :
access]

Access rights to the component (accesslist).

C

user Name of user or group. String of at most 64 characters.

accessmode Access mode is specified by 4 attributes of
read, write, control and execute.

 AAAA

Each A can be “Y”es, “N”o or
“X” for don’t care.

e.g. “YYXX” has read and write,

94

but control and execute are don’t
care.

zoneevent Zone event block. O
dtimereal Date/time of real world.

R YYYYMMDDhhmmss

YYYY = Year
MM = Month (“01” to “12”
DD = Day (“01” to “31”)
hh = Hour (“00 to 23”)
mm = Minutes (“00” to “59”)
ss = Seconds (“00” to “59”)

dtimegame Date/time of game simulation.

R YYYYMMDDhhmmss

YYYY = Year
MM = Month (“01” to “12”
DD = Day (“01” to “31”)
hh = Hour (“00 to 23”)
mm = Minutes (“00” to “59”)
ss = Seconds (“00” to “59”)

zonename Name of the zone.

R String of at most 64 characters.

secrecy Intended secrecy level for people entering
the zone.

O String of at most 64 characters.

integrity Intended integrity level for people entering
the zone.

O String of at most 64 characters.

physical
security

[zoneevent : physicalsecurity]

Physical security measures applied to the
zone.

O

physecbool [zoneevent : physicalsecurity : physecbool]

Physical security measure setting of a
boolean type.

field Name of the physical security measure.

e.g.
“Receptionist”| “GuardAtDoor”|
“PatrollingGuard”|
“ProhibitMedia”|
“ProhibitPhoneDevices”|
“ExpensivePerimeterAlarms”|
“ModeratePerimeterAlarms”|
“ReinforcedWalls”|

R String of at most 64 characters.

95

“SurveillanceCameras”|
“PermitEscortedVisitors”|
“VisualPeopleInspection”|
“XrayPackages”|
“KeyLockOnDoor”|
“CipherLockOnDoor”|
“ExpensiveIrisScanner”|
“ModerateIrisScanner”|
“Badges”

boolean Indicates whether the physical security
measure is being applied (“true”) or not
(“false”).

R “true” | “false”

permitted
user

[zoneevent : physicalsecurity :
permitteduser]

Permitted users to a zone.

O

user Name of user or group.

R String of at most 64 characters.

boolean Indicates whether the user is being added
(“true”) or removed (“false”) from the list of
permitted personnels for entering the zone.

R “true” | “false”

alertevent Alert event block. O
dtimereal Date/time of real world.

R YYYYMMDDhhmmss

YYYY = Year
MM = Month (“01” to “12”
DD = Day (“01” to “31”)
hh = Hour (“00 to 23”)
mm = Minutes (“00” to “59”)
ss = Seconds (“00” to “59”)

dtimegame Date/time of game simulation.

R YYYYMMDDhhmmss

YYYY = Year
MM = Month (“01” to “12”
DD = Day (“01” to “31”)
hh = Hour (“00 to 23”)
mm = Minutes (“00” to “59”)
ss = Seconds (“00” to “59”)

indicator [alertevent : indicator]

Indicator of a possible ongoing attack
(including false positives).

C

security Security target that the indicator pertains to. R “zone” | “component”

96

target e.g. “zone”, “component”, …

targetname Name of the target.

R String of at most 64 characters.

message The indicator message (which is also
displayed to the student in CyberCIEGE).

R String of at most 1024 characters.

attack [alertevent: attack]

Actual attack that was generated by
CyberCIEGE. This represents the actual
occurrence of the attack that is not revealed
to the student in CyberCIEGE, in contrast to
the indicator.

C

security
target

Security target that the indicator pertains to.
e.g. “zone”, “component”, …

R “zone” | “component”

targetname Name of the target.

R String of at most 64 characters.

attacktype Type of attack (refer to “Legal Attacker
Moves” document).

R String of at most 1024 characters.

result Result of the attack - whether was it
successful (“true”) or if the defensive
measures were successful in stopping it
(“false”).

R “true” | “false”

• Reqd - indicates whether the element is (R)equired or (O)ptional within the parent block.
(C)hoice implies that at least one of the elements must appear within the block.

• Dollar amount is specified in the form 9[9…]. e.g. $25 is “25”, $1,200 is “1200”.
Table 6 Element/attribute description.

97

APPENDIX D. INTERFACE SPECIFICATIONS WITH KEN
JOHNS (SCENARIO DEFINITION TOOL)

A. PURPOSE
The purpose of this appendix is to define the interface specifications with Ken

John’s thesis effort which aims to develop the Scenario Definition Tool.

B. TAXONOMY FILE FORMAT
The Taxonomy terms are defined as hierarchical relationships. The XML format

is a convenient syntax for representing such a structure. Defined here is the DTD for this

purpose:

<!--
 Name: Taxonomy.dtd
 Version: 1.0
-->

<!ELEMENT simsecuritytaxonomy (tnode)*>
<!ELEMENT tnode (tname, (tnode)*)>
<!ELEMENT tname (#PCDATA)>

Figure 59. Taxonomy Document Type Definition.

The XML data file holding the Taxonomy terms are stored in the corresponding

Taxonomy.xml file. An example is shown as follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE simsecuritytaxonomy SYSTEM “Taxonomy.dtd”>

<simsecuritytaxonomy>
 <tnode>
 <tname>Encryption</tname>
 <tnode>
 <tname>Public Key Encryption</tname>
 <tnode>
 <tname>RSA</tname>
 </tnode>
 </tnode>
 <tnode>
 <tname>Symmetric Key Encryption</tname>
 </tnode>
 </tnode>
 <tnode>
 <tname>E-voting</tname>
 </tnode>

98

</simsecuritytaxonomy>
Figure 60. Taxonomy.xml sample.

C. EMBEDDED TAXONOMY TAGS
When Scenario Definition Files are created, scenario tagging can be optionally

performed. This is done by selecting Taxonomy terms from the Taxonomy.xml file. The

Taxonomy terms can be embedded anywhere within the Scenario Definition File,

prefixed by comments (i.e. “//”). Each Taxonomy term is bounded by a

“TaxonomyTag:” prefix and “:end” suffix pair as shown below:

:
// TaxonomyTag: Taxonomy Term #1 :end
// TaxonomyTag: Taxonomy Term #2 :end
:

Figure 61. Embedded Taxonomy tags.

D. SCENARIO EDITOR PROGRAM PARAMETERS
To enable the Campaign Analyzer to review the scenario definition, the Scenario

Definition Tool will need to support the following program parameters:

ScenarioDefinitionTool -s <Scenario File>

This loads the given <Scenario File> into the the Scenario Definition Tool to

enable the Instructor to review the details.

Program
Parameter

Description Format

-s <Scenario File> Filename of the scenario to be loaded. Standard filename format.

99

APPENDIX E. SOURCE CODES

A. PURPOSE
The purpose of this appendix is to list the source code and configuration

filenames for the application modules developed. The sections are organized according

to the directory structure of the Java source codes and configuration files.

Each application module is placed in a separate directory. In addition, base

classes and utility classes are stored in the “Utility” directory. Configuration files are

stored in a separate “bin” directory. A brief description of each file is provided.

B. TAXONOMY MANAGER

Filename Description

TaxonomyManager.java The main program class for the Taxonomy Manager

module.

TaxonomyCtl.java Controller (control object) for the Taxonomy

Manager.

TaxonomyGUI.java Main GUI (boundary object) for the Taxonomy

Manager.

TaxonomyBuilder.java Builder class for reading/writing to the

Taxonomy.xml.

Taxonomy.java Taxonomy (entity object).

Table 7 Taxonomy Manager source codes.

C. CAMPAIGN MANAGER

Filename Description

CampaignManager.java The main program class for the Campaign Manager

module.

CampaignManagerCtl.java Controller (control object) for the Campaign

Manager.

100

CampaignManagerGUI.java Main GUI (boundary object) for the Campaign

Manager.

CampaignGUI.java GUI (boundary object) for editing a campaign.

ScenarioFilterGUI.java GUI (boundary object) for defining the filter.

CampaignCatalogBuilder.java Builder class for reading/writing to the

CampaignCatalog.xml.

CampaignBuilder.java Builder class for exporting a campaign to a folder.

CampaignRelease.java Stores the campaign data for a releasable

campaign (entity object).

Campaign.java Stores the campaign data (entity object) for a

campaign being edited.

Scenario.java Stores the scenario data.

ScenarioCatalogBuilder.java Builder class to recursively parse and assemble a list

of available scenarios.

Table 8 Campaign Manager source codes.

D. CAMPAIGN PLAYER

Filename Description

CampaignPlayerTool.java The main program class for the Campaign Player

module.

CampaignPlayerCtl.java Controller (control object) for the Campaign Player.

CampaignPlayerGUI.java Main GUI (boundary object) for the Campaign

Player.

XMLFilter.java XML filter.

CampaignPlayBuilder.java Builder class for reading a campaign.xml file.

CampaignPlayer.java Defines a student (entity object).

CampaignPlay.java Defines a campaign being played (entity object).

101

ScenarioPlay.java Defines a scenario being played (entity object).

ScenarioDefinitionFile.java Defines a scenario definition (entity object).

Table 9 Campaign Player source codes.

E. CAMPAIGN ANALYZER

Filename Description

CampaignAnalyzer.java The main program class for the Campaign Analyzer

module.

CampaignAnalyzerCtl.java Controller (control object) for the Campaign

Analyzer.

CampaignAnalyzerGUI.java Main GUI (boundary object) for the Campaign

Analyzer which provides a campaign-level summary

view of student event logs.

EventLogGUI.java GUI for the Event Log Analyzer which presents the

detailed event log of a single student.

EventTableModel.java A model for holding a table structure of logged

events.

PropertyTableModel.java A model for holding a table structure of the sub-

events.

StudentTableModel.java A model for holding a table structure of student

data.

ScenarioEventLog.java Defines a Scenario Event Log File (entity object).

LogEvent.java Defines a single log event (entity object).

PlayerStatus.java Maintains the summary status values of a student for

a given scenario.

Table 10 Campaign Analyzer source codes.

102

F. UTILITY

Filename Description

CampaignResource.java Utility class to handle resource property definitions

CustomDateTime.java A customized date/time class to handle the date/time

formats used.

Helper.java A singleton class providing miscellaneous useful

functions.

SDFilenameFilter.java FilenameFilter class for Scenario Definition Files.

StdTableModel.java Base class for the TableModel used in JTable.

XMLBuilder.java Base class for XML-based builder classes.

XMLFilter.java Implements a FileFilter for XML files (i.e. *.xml).

XMLHelper.java Defines various XML-related constants.

StringVector.java Implements a Vector class of String objects.

Table 11 Utility and base classes.

G. BIN

Filename Description

Campaign.properties The resource property definitions

Taxonomy.dtd DTD for the Taxonomy data.

Taxonomy.xml XML file to store the Taxonomy hierarchy.

CampaignCatalog.dtd DTD for the catalog of campaigns.

CampaignCatalog.xml XML file to store the catalog of campaigns.

CampaignRelease.dtd DTD for released campaigns.

EventLog.dtd DTD for the event log file.

DTD: Document Type Definition; XML: Extensible Mark-up Language.

Table 12 Resource files.

103

LIST OF REFERENCES

[Anderson 1972] James Anderson. “Computer Security Technology Planning Study”.

Technical report ESD-TR-73-5, vol II, USAF Electronics Systems Division, pp.

1 to 5. Oct 1972.

[Boyce 2002] Joseph Boyce and Dan Jennings. “Information Assurance: Managing

Organization IT Security Risks”. Butterworth-Heinemann, Woburn, MA, pp. 32

to 34. 2002.

[Bruegge 2000] Bernd Bruegge and Allen Dutoit. “Object-Oriented Software

Engineering: Conquering Complex and Changing Systems”. Prentice Hall, Upper

Saddle River, NJ, pp 134 to 135. 2000.

[DOA 1993] Department of the Army. “A Leader’s Guide to After-Action Review”.

http://call.army.mil/products/spc_prod/tc25-20/table.htm, Training Circular 25-

20, US Army Combined Arms Center. Last accessed: Sep 1993.

[DON 2000] Department of the Navy. “Introduction to Information Assurance

Publication”. IA Pub 5239-01, Department of the Navy, pp. 2 to 3, 15 to 17.

May 2000.

[DSTA 2003] Singapore Defence Science and Technology Agency. “PC War Games to

Enhance Soldiers’ Training”. DSTA Vista newsletter, Vol 21, pp. 1, 10. May

2003.

[Irvine 2003] Cynthia Irvine and Michael Thompson. “Teaching Objectives of a

Simulation Game for Computer Security”. Proceedings of Informing Science and

Information Technology Joint Conference, Pori, Finland. Jun 2003.

[Jacobson 1999] Ivar Jacobson, Grady Booch and James Rumbaugh. “Unified Software

Development Process”, Addison-Wesley. Feb 1999.

[Joint 1998] Joint Chiefs of Staff. “Joint Doctrine for Information Operations”. Joint

Pub 3-13, published under the direction of the Chairman of the US Joint Chiefs of

Staff, pp. I-1 to I-6, III-1 to III-4. Oct 1998.

104

[Leffingwell 1999] Dean Leffingwell and Don Widrig. “Managing Software

Requirements: A Unified Approach”. Addison-Wesley, Indianapolis, IN, pp. 42,

252 to 270. 1999.

[Livingston 2003] Brian Livingston. “Patches that Patch”. eWeek magazine, 17 Nov

2003 issue, pp. 54. Nov 2003.

[Morrison 1999] John Morrison and Larry Meliza. “Foundations of the After Action

Review Process”. http://call.army.mil/products/spc_prod/aar/aar.htm, Special

Report 42 by the US Army Research Institute for the Bahavioral and Social

Sciences. Jul 1999.

[Nexus 2003] Nexus Interactive. “AI Wars: The Awakening”. http://www.aiwars.com.

Last accessed: Nov 2003.

[Rivermind 2003] Rivermind, Inc. “CyberCIEGE: Scenario Definition File Format”.

File format for specifying the scenario definition co-developed by NPS and

Rivermind. 2003.

[Salzer 1975] Jerome Saltzer and Michael Schroeder. “The Protection of Information in

Computer System”. Proceedings of the IEEE, vol. 63, no. 9, pp. 1278-1308. Sep

1975.

[Seo 2002] James Jung-Hoon Seo. “Reading the Look and Feel: Interface Design and

Critical Theories”. http://acg.media.mit.edu/people/jseo/courses/cms800/final-

paper.html, pp. 2 to 5. Jan 2002.

[Saunders 2003] John Saunders. “The Case for Modeling and Simulation of

Information Security”.

http://www.johnsaunders.com/papers/securitysimulation.htm, National Defense

University. Last accessed: Dec 2003.

[Sun 2003] Sun Microsystems. “Java 2 Platform, Standard Edition (J2SE)”. Download

site for the Java 2 API. http://java.sun.com/j2se/. Last accessed: Aug 2003.

[Tanner 2002] Michael Tanner, Christopher Elsasser and Gregory Whittaker. “Security

Awareness Training Simulation”.

http://www.mitre.org/work/tech_papers/tech_papers_01/tanner_security/tanner_se

105

curity.pdf. Cognitive Science and Artificial Intelligence Center, The MITRE

Corporation, pp. 1 to 3. 14 Jan 2002.

[USArmy 2003] US Army. “America’s Army”. US Army website for America’s

Army. http://www.americasarmy.com/. Last accessed: Aug 2003.

[W3C 2003] World Wide Web Consortium (W3C). “Extensible Mark-up Language

(XML)”. W3C website for XML resources. http://www.w3.org/XML/. Last

accessed: Oct 2003.

106

THIS PAGE INTENTIONALLY LEFT BLANK

107

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Dr. Ernest McDuffie
 National Science Foundation
 Arlington, VA

4. Dr. Carl Landwehr
 National Science Foundation

Arlington, VA

5. RADM Zelebor

N6/Deputy DON CIO
Arlington, VA

6. Russell Jones
 N641

Arlington, VA

7. David Wirth
N641
Arlington, VA

8. David Wennergren
Headquarters U.S. Navy
Arlington, VA

9. CAPT Sheila McCoy
Headquarters U.S. Navy
Arlington, VA

10. CAPT Robert Zellmann

CNO Staff N614
Arlington, VA

11. Dr. Ralph Wachter
ONR
Arlington, VA

108

12. Steve LaFountain
NSA
Fort Meade, MD

13. Dr. Vic Maconachy
NSA
Fort Meade, MD

14. Richard Hale

DISA
Falls Church, VA

15. George Bieber

OSD
Washington, DC

16. Deborah Cooper

DC Associates, LLC
Roslyn, VA

17. David Ladd
Microsoft Corporation
Redmond, WA

18. Marshall Potter

Federal Aviation Administration
Washington, DC

19. Ernest Lucier
Federal Aviation Administration
Washington, DC

20. RADM Joseph Burns
Fort George Meade, MD

21. Dr. Greg Larson
IDA
Alexandria, VA

22. Daniel Wolf
 NSA

Fort Meade, MD

23. Penny Lehtola
NSA
Fort Meade, Maryland

109

24. Ray A. Letteer

Head, Information Assurance, HQMC C4 Directorate
 Washington, DC

25. Cynthia Irvine

Naval Postgraduate School
Monterey, CA

26. Michael Thompson
Naval Postgraduate School
Monterey, CA

27. Yeo Tat Soon
Temasek Defence Systems Institute
National University of Singapore
Singapore

28. Seah Siew Hwee

Defence Science & Technology Agency
Singapore

29. Tang Bee Theng

Defence Science & Technology Agency
Singapore

30. Teo Tiat Leng

Defence Science & Technology Agency
Singapore

